Understanding list iteration and function calls in Racket - racket

I'm trying to implement a prolog-like program using Racket. I'm very new to the language still. I was able to write the =or, =and, and == that are seen in the =parent function below, but I'm having trouble with query and I feel like it's a basic misunderstanding given my beginner's status with the language.
Here's the parent function:
(define (=parent x y)
(=or (=and (== x "Cronus") (== y "Zeus"))
(=and (== x "Zeus") (== y "Athena"))
(=and (== x "Athena") (== y "Erichthonius"))))
Here's the expected use:
(query (option) (=parent "Zeus" option))
...which will succeed when option is Athena.
I've given it a number of different attempts, but am always getting the wrong output and behavior. I initially tried to use the local-binding of let but I've simplified it even further and it still isn't working:
(define query
(lambda (arg1 arg2)
(for/list ([i (in-list arg1)])
(ormap (λ (x) arg2 x) i))))
I also took the approach of defining option as so:
(define (option)
(list '(Zeus Athena Erichthonius Cronus)))
Running the query code as shown above always results with an output of '(Zeus).
In the debugger, when I set a breakpoint at the for/list line, I see i => (Zeus Athena Erichthonius Cronus) and i never changes before query returns. I thought the code I wrote would iterate through the list, assigning i to each element, but that's not the case here. So where am I going wrong?
In addition, in each step through the debugger, I never enter the (=parent x y) function. And I'm not understanding why it isn't being called.
My last question: why can't I define option using a list of strings? (it produces: ormap: contract violation, expected: list? given: "Zeus"
(define (option)
(list "Zeus" "Athena" "Erichthonius" "Cronus"))

Related

DrRacket Locals and Lambdas

I'm currently doing an assignment for a class where we have to utilize lambdas and locals to redefine functions we've previously defined. I don't really want to just have it written out for me since the issue is something I'm going to face sooner or later.
I don't understand how a local works, and as for a lambda I'm not sure what some of the clauses mean.
Here's an example of a lambda function I made that involved taking only the even numbers from a list and squaring them:
(define (even-squares lon)
(foldr (lambda (x y)
(if (even? x) (cons (sqr x) y)
y)) '() lon))
This worked fine for the problem, but I don't fully get lambda in this situation. I understand that it makes x and y, which are two elements from the list the main focus, and performs an operation regarding them. In this case, an if statement is made where x is tested to be even and then added to a list if it is, or removed otherwise. The function then continues with the y from the first case as the new x and the next element of the list as the new y. Please let me know if this is incorrect in any sense.
What I don't understand in the slightest is why the "else" clause of the if statement is just a y, what does that do?
On the other hand, I am at a complete loss for what a local does. From my little understanding that the old videos my college provides to us gave me, it's a function that produces a function, but I don't understand what it's meant to take in after the definitions clause.
If anyone could provide examples or just explain the concepts I'd greatly appreciate it. Thank you :)
I took the following code from this similar question- the answer has a little bit better argument names:
(define (even-squares-only lon)
(foldr (lambda (element result)
(if (even? element)
(cons (sqr element) result)
result))
'()
lon))
As you can see, the first argument element is an element of the list and the last argument result is an intermediate result/ accumulator.
At the beginning, result is an empty list. In each step, one element from the list is tested. If it meets the condition, it's added to the result squared. If it doesn't, you continue with an unchanged result.
See also documentation for foldl and foldr.
As for the local: if you are familiar with let or letrec, local is similar, just with a little bit different syntax. if documentation entry didn't help you, here is an example:
When rewriting your function, you can decide to remove lambda from foldr and put it somewhere else. So, without any knowledge of local, you can do this:
(define (reducing-fn element result)
(if (even? element)
(cons (sqr element) result)
result))
(define (even-squares-only lon)
(foldr reducing-fn
'()
lon))
reducing-fn is defined globally, so any other function than even-squares-only can use it too.
But you can also define it locally, so it can be used only in the body of local. No other function can use the definition from local and it can also increase readability because you see that reducing-fn "belongs" only to even-squares-only. So, you would rewrite it like this:
(define (even-squares-only lon)
(local [(define (reducing-fn element result)
(if (even? element)
(cons (sqr element) result)
result))]
(foldr reducing-fn
'()
lon)))

Find max in lisp

I am trying to do Recursive method to find max value in list.
Can anyone explain where I made the mistake on this code and how to approach it next time.
(defun f3 (i)
(setq x (cond (> (car (I)) (cdr (car (I))))
(f3 (cdr (I)))))
)
(f3 '(33 11 44 2) )
also I tried this following method and didn't work:
(defun f3 (i)
(cond ((null I )nil )
(setq x (car (i))
(f3(cdr (i)))
(return-from max x)
)
Thanks a lot for any help. I am coming from java if that helps.
If you're working in Common Lisp, then you do this:
(defun max-item (list)
(loop for item in list
maximizing item))
That's it. The maximizing item clause of loop determines the highest item value seen, and implicitly establishes that as the result value of loop when it terminates.
Note that if list is empty, then this returns nil. If you want some other behavior, you have to work that in:
(if list
(loop for item in list
maximizing item))
(... handle empty here ...))
If the number of elements in the list is known to be small, below your Lisp implementation's limit on the number of arguments that can be passed to a function, you can simply apply the list to the max function:
(defun max-item (list)
(apply #'max list))
If list is empty, then max is misused: it requires one or more arguments. An error condition will likely be signaled. If that doesn't work in your situation, you need to add code to supply the desired behavior.
If the list is expected to be large, so that this approach is to be avoided, you can use reduce, treating max as a binary function:
(defun max-item (list)
(reduce #'max list))
Same remarks regarding empty list. These expressions are so small, many programmers will avoid writing a function and just use them directly.
Regarding recursion, you wouldn't use recursion to solve this problem in production code, only as a homework exercise for learning about recursion.
You are trying to compute the maximum value of a list, so please name your function maximum and your parameter list, not f3 or i. You can't name the function max without having to consider how to avoid shadowing the standard max function, so it is best for now to ignore package issues and use a different name.
There is a corner case to consider when the list is empty, as there is no meaningful value to return. You have to decide if you return nil or signal an error, for example.
The skeleton is thus:
(defun maximum (list)
(if (null list)
...
...))
Notice how closing parentheses are never preceded by spaces (or newlines), and opening parentheses are never followed by spaces (or newlines). Please note also that indentation increases with the current depth . This is the basic rules for Lisp formatting, please try following them for other developers.
(setq x <value>)
You are assigning an unknown place x, you should instead bind a fresh variable if you want to have a temporary variable, something like:
(let ((x <value>))
<body>)
With the above expression, x is bound to <value> inside <body> (one or more expressions), and only there.
(car (i))
Unlike in Java, parentheses are not used to group expressions for readability or to force some evaluation order, in Lisp they enclose compound forms. Here above, in a normal evaluation context (not a macro or binding), (i) means call function i, and this function is unrelated to your local variable i (just like in Java, where you can write int f = f(2) with f denoting both a variable and a method).
If you want to take the car of i, write (car i).
You seem to be using cond as some kind of if:
(cond (<test> <then>) <else>) ;; WRONG
You can have an if as follows:
(if <test> <then> <else>)
For example:
(if (> u v) u v) ;; evaluates to either `u` or `v`, whichever is greater
The cond syntax is a bit more complex but you don't need it yet.
You cannot return-from a block that was undeclared, you probably renamed the function to f3 without renaming that part, or copied that from somewhere else, but in any case return-from is only needed when you have a bigger function and probably a lot more side-effects. Here the computation can be written in a more functionnal way. There is an implicit return in Lisp-like languages, unlike Java, for example below the last (but also single) expression in add evaluates to the function's return value:
(defun add-3 (x)
(+ x 3))
Start with smaller examples and test often, fix any error the compiler or interpreter prints before trying to do more complex things. Also, have a look at the available online resources to learn more about the language: https://common-lisp.net/documentation
Although the other answers are right: you definitely need to learn more CL syntax and you probably would not solve this problem recursively in idiomatic CL (whatever 'idiomatic CL' is), here's how to actually do it, because thinking about how to solve these problems recursively is useful.
First of all let's write a function max/2 which returns the maximum of two numbers. This is pretty easy:
(defun max/2 (a b)
(if (> a b) a b))
Now the trick is this: assume you have some idea of what the maximum of a list of numbers is: call this guess m. Then:
if the list is empty, the maximum is m;
otherwise the list has a first element, so pick a new m which is the maximum of the first element of the list and the current m, and recurse on the rest of the list.
So, we can write this function, which I'll call max/carrying (because it 'carries' the m):
(defun max/carrying (m list)
(if (null list)
m
(max/carrying (max/2 (first list) m)
(rest list))))
And this is now almost all we need. The trick is then to write a little shim around max/carrying which bootstraps it:
to compute the maximum of a list:
if the list is empty it has no maximum, and this is an error;
otherwise the result is max/carrying of the first element of the list and the rest of the list.
I won't write that, but it's pretty easy (to signal an error, the function you want is error).

Creating a lisp file that reads numbers from the keyboard until 0 is read. Display the minimim value

I am stuck, I did it this way but I feel it is wrong.
(defun (find-min a b))
(cond
(> a b) (find-min b (read))
(< a b) (find-min a (read))
)
(display (find-min (read) (read)))
Code review
The code as given is badly formatted. It is really important to test your code often, to check that at least the syntax is correct. Instead of writing the code in isolation, you should ask the environment, the interpreter, to parse your code and execute it. You'll have a shorter feedback loop, which will help getting the code right.
For example, if you start your interpreter (you mentionned clisp), you are in a Read Eval Print Loop (REPL), where you write Lisp forms, which are evaluated to produce a result, which is printed. So just by writing code, it will get parsed and evaluated, which can quickly inform you about possible errors.
So if you write the code as you wrote it, you will notice that the interpreter first reads this:
(defun (find-min a b))
This is because all parentheses are balanced: the Lisp reader (the R in REPL) will build a list of two elements, namely defun and the list (find-min a b).
When evaluation is performed (the E in REPL), the list will be interpreted as a Lisp form, but this is a malformed defun.
DEFUN expects a function name, followed by a list of variable bindings, followed by the function body. So you can try writing for example:
(defun find-min (a b)
0)
This above defines a function named find-min, which accepts two parameters a and b, and always evaluate as 0 (the body of the function).
In your case you want to write:
(defun find-min (a b)
(cond ...))
You COND form is malformed too:
(cond
(> a b) (find-min b (read))
(< a b) (find-min a (read))
)
Each clause in a cond should be a list containing first a test, then zero or more expressions. So it would be:
(cond
((> a b) ...)
((< a b) ...))
Note that there is a remaining case, namely (= a b), which is not addressed.
Approach
But overall, I do not understand what your code is trying to achieve. Since all inputs are supposed to be obtained with (read), there is no need to accept arguments a and b. The whole thing could be a loop:
(defun read-min ()
(loop
for val = (read)
for zerop = (= val zero)
for min = val then (if zerop min (min min val))
until (= val 0)
finally (return min)))
As suggested by #leetwinski, there is also a shorter alternative:
(loop for val = (read) until (= val 0) minimizing val)
But I suppose you are not expected to use the loop form, so you should try to write a recursive function that does the same.
What you need to do is to pass the current minimum value ever read to your function, recursively, like so:
(defun read-min-rec (min-so-far)
...)

How do I do anything with multiple return values in racket?

It seems like in order to use multiple return values in Racket, I have to either use define-values or collect them into a list with (call-with-values (thunk (values-expr)) list). In the latter case, why would someone to choose to return multiple values instead of a list, if just have to collect them into a list anyway? Additionally, both of these are very wordy and awkward to work into most code. I feel like I must be misunderstanding something very basic about multiple-return-values. For that matter, how do I write a procedure accepting multiple return values?
Although I may be missing some of the Scheme history and other nuances, I'll give you my practical answer.
First, one rule of thumb is if you need to return more than 2 or 3 values, don't use multiple values and don't use a list. Use a struct. That will usually be easier to read and maintain.
Racket's match forms make it much easier to destructure a list return value -- as easy as define-values:
(define (f)
(list 1 2))
(match-define (list a b) (f))
(do-something-with a b)
;; or
(match (f)
[(list a b) (do-something-with a b)])
If you have some other function, g, that takes a (list/c a b), and you want to compose it with f, it's simpler if f returns a list. It's also simpler if both use a two-element struct. Whereas call-with-values is kind of an awkward hot mess, I think.
Allowing multiple return value is an elegant idea, because it makes return values symmetric with arguments. Using multiple values is also faster than lists or structs (in the current implementation of Racket, although it could work otherwise).
However when readability is a higher priority than performance, then in modern Racket it can be more practical to use a list or a struct, IMHO. Having said that I do use multiple values for one-off private helper functions.
Finally, there's a long, interesting discussion on the Racket mailing list.
Racket doc gives us the quintessential example why, in disguise:
> (let-values ([(q r) (quotient/remainder 10 3)])
(if (zero? r)
q
"3 does *not* divide 10 evenly"))
"3 does *not* divide 10 evenly"
We get two values directly, and use them separately in a computation that follows.
update: In Common Lisp, with its decidedly practical, down-to-the-metal, non-functional approach (where they concern themselves with each extra cons cell allocation), it makes much more sense, especially as it allows one to call such procedures in a "normal" way as well, automatically ignoring the "extra" results, kind of like
(let ([q (quotient/remainder 10 3)])
(list q))
But in Racket this is invalid code. So yeah, it looks like an extraneous feature, better to be avoided altogether.
Using list as the consumer defeats the purpose of multiple values so in that case you could just have used lists to begin with. Multiple values is actually a way of optimization.
Semanticly returning a list and several values are similar, but where you return many values in a list effort goes into creation of cons cells to make the list and destructuring accessors to get the values at the other end. In many cases however, you wouldn't notice the difference in performance.
With multiple values the values are on the stack and (call-with-values (lambda () ... (values x y z)) (lambda (x y z) ...) only checks the number to see if it's correct.. If it's ok you just apply the next procedure since the stack has it's arguments all set from the previous call.
You can make syntactic sugar around this and some popular ones are let-values and SRFI-8 receive is a slightly simpler one. Both uses call-with-values as primitive.
values is handy because it
checks that the number of elements returned is correct
destructures
For example, using
(define (out a b) (printf "a=~a b=~a\n" a b))
then
(let ((lst (list 1 2 3)))
(let ((a (first lst)) (b (second lst))) ; destructure
(out a b)))
will work even though lst has 3 elements, but
(let-values (((a b) (values 1 2 3)))
(out a b))
will not.
If you want the same control and destructuring with a list, you can however use match:
(let ((lst (list 1 2)))
(match lst ((list a b) (out a b))))
Note that he creation of the structure, e.g. (list 1 2) vs (values 1 2) is equivalent.

Standard way for breaking out of recursion in scheme

I am writing my first program in scheme. I get pretty deep into recursion because I basically interpret a program for a simple robot which can have nested procedure calls.
If I find a violation I need to stop interpreting the program and return the last valid state.
I've solved it by declaring a global variable (define illegalMoveFlag 0) and then setting it via set!.
It works fine, but I guess my tutor won't like it (because it's not functional approach I guess)
Other approach I've thought about is to add an error parameter to every function I call recursively in the program. I don't quite like it because it would make my code far less readable, but I guess it's more 'functional'.
Is there maybe a third way I didn't think about? And can my approach be justified in this paradigm, or is it basically a code smell?
Since this was your first Scheme program, you probably just need to introduce a conditional expression, cond, in order to avoid further recursion when you reach the end. For example:
; sum : natural -> natural
; compute the sum 0+1+...+max
(define (sum max)
(define (sum-helper i sum-so-far)
(if (> i max)
sum-so-far
(sum-helper (+ i 1) (+ sum-so-far i))))
(sum-helper 0 0))
(display (sum 10))
(newline)
However, if you need a traditional return to return like longjmp in C, you will need to store and use an escape continuation. This can be done like this:
(define (example)
(let/ec return
(define (loop n)
(if (= n 100000)
(return (list "final count: " n))
(loop (+ n 1))))
(loop 0)))
(display (example))
If let/ec is not defined in your Scheme implementation, then prefix your program with:
(define-syntax let/ec
(syntax-rules ()
[(_ return body ...)
(call-with-current-continuation
(lambda (return)
body ...))]))
UPDATE:
Note that cond has an => variant:
(cond
[(call-that-can-fail)
=> (lambda (a) <use-a-here>))]
[else <do-something-else>])
If the call succeeds then the first, clause is
taken and the result is bound to a. If the call fails,
then the else clause is used.
The usual way to stop recursing is, well, to stop recursing. i.e., don't call the recursive function any longer. :-)
If that is too hard to do, the other way to break out of something is to capture a continuation at the top level (before you start recursing), then invoke the continuation when you need to "escape". Your instructor may not like this approach, though. ;-)
You might want to use the built-in procedure error, like so:
(error "Illegal move") ; gives ** Error: Illegal move
This will raise an exception and stop interpreting the program (though I suspect this may not be what you are looking for).
You can also provide additional arguments, like this:
(error "Illegal move: " move) ; gives ** Error: Illegal move: <move>
You can exit of a recursion (or from any other process) using a continuation. Without knowing more specifics, I'd recommend you take a look at the documentation of your interpreter.
Make illegalMoveFlag a paramter in the function instead of a global variable
I'll give you a simple example with factorials
ie:
0! = 1
n! = n * (n - 1)! when n (1 ... infinity)
lets call this a recursive factorial
(define (fact-r n)
(if
[eq? n 0]
1
(* n (fact-r (- n 1)))
)
)
An alternative would be to use a parameter to the function to end the recursion
Lets call it iterative factorial
(define (fact-i n total)
(if
(eq? n 0)
total
(fact-i (- n 1) (* n total))
)
)
total needs to start at 1 so we should make another function to make using it nicer
(define (nice-fact n)
(fact-i n 1))
You could do something similar with illegalMoveFlag to avoid having a global variable
As far as avoiding using set! goes, we'll probably need more information.
In some cases its still rather hard to avoid using it. Scheme is fully turing complete without the use of set! however when it comes to accessing an external source of information such as a database or a robot set! can become the only practical solution...