"Lifting" exceptions to Option types - scala

Both F# and Scala act as a hybrid language that is often used to bridge the words of tradional object oriented code to functional code.
A concept that belongs more to the OO world are exceptions, whereas the functional world favors Option types in many cases.
To wrap existing library code that relies on exceptions - and make it more functional - I would thus like to "lift" exception-throwing code to instead return an option type.
In Scala, there is a nice library function to "catch all" and convert to option. It can be used like this:
import scala.util.control.Exception._
val functionalVersion = allCatch opt myFunction
see In Scala, is there a pre-existing library function for converting exceptions to Options?
Now that I'm moving to F# I have the same requirement, but I can't seem to find an existing utility function for this - and also struggle to implement one myself.
I can create such a wrapper for a unit function, aka an action
let catchAll f = try Some (f()) with | _ -> None
But the problem here is that I don't want to first wrap all the exeption throwing code into an action.
For example I would like to wrap the array-indexing operator, so that it doesn't throw.
// Wrap out-of-bounds exception with option type
let maybeGetIndex (array: int[]) (index: int) = catchAll (fun () -> array.[index])
maybeGetIndex [| 1; 2; 3 |] 10 // -> None
However, it would be much nicer if one could simple write
(catchAll a.[index])
i.e. apply catchAll to a whole expression before it is evaluated.
(Scala can achieve this through call-by-name parameters which seem to be missing from F#)
So this question is twofold:
Is there an existing library function to wrap exceptions into option
types?
Is there a language feature that would allow me to implement
it?

First of all, I think that it's not true that a "concept that belongs more to the object-oriented world are exceptions". Exceptions exist in many functional languages of the ML family and, for example, OCaml relies on them quite heavily and uses them even for certain control flow structures. In F#, this is not so much the case, because .NET exceptions are somewhat slower, but I see exceptions very much orthogonal to the object-oriented/functional issue.
For this reason, I actually find exceptions often preferable to option types in F#. The downside is that there is less type-checking (you do not know what might throw), but the upside is that the language provides a nice integrated langauge support for exceptions. If you need to handle exceptional situations then exceptions are a good way of doing that!
To answer your original question about syntactic tricks you can make - I would probably just use a function as your existing code does, because that's explicit and easy to understand (and presumably, you'll only need exception wrapping in some core functions that you implement).
That said, you can define a computation expression builder that wraps the code in the body and serves as your catchAll function with a somewhat neater syntax:
type CatchAllBuilder() =
member x.Delay(f) = try Some(f()) with _ -> None
member x.Return(v) = v
let catchAll = CatchAllBuilder()
This lets you write something like:
catchAll { return Array.empty.[0] }
As mentioned earlier, I wouldn't do this because (i) I don't think all exceptions need to be converted to options in F# and (ii) it introduces unfamiliar syntax that new team members (and future you) might be confused by, but it is probably the nicest syntax you can get.
[EDIT: Now a working version with return - this is somewhat less pretty, but perhaps still useful!]

Related

How can I allow the caller to call method of field of case class?

I am not sure the keywords for this pattern, sorry if the question is not clear.
If you have:
case class MyFancyWrapper(
somethingElse: Any,
heavyComplexObject: CrazyThing
)
val w = MyFancyWrapper(???, complexThing)
I want to be able to call w.method with the method coming from complexThing. I tried to extends CrazyThing but it is a trait and I don't want to implement all the method that would be very tedious. I also don't want to have to do:
def method1 = heavyComplexObject.method1
...
for all of them.
Any solution ?
Thanks.
You can do this with macros but I agree with Luis that this is an overkill. Macros are intended to repetitive boring things, not one time boring things. Also this is not as trivial as it sounds, because you probably don't want to pass through all the methods (you probably still want your own hashCode and equals). Finally macros have bad IDE support so most probably no auto-completion for all those methods. On the other hand if you do use a good IDE (like IDEA) there is most probably an action like "Delegate methods" that will generate most of the code for you. You still will have to change the return type from Unit to MyFancyWrapper and add returning this at the end of each method but this can easily be done with mass replace operations (hint: replace "}" with "this }" and the automatically re-formatting code should do the trick)
Here are some screenshots of the process from JetBrains IDEA:
You can use an implicit conversion to make all the methods of heavyComplexThing directly available on MyFancyWrapper:
implicit def toHeavy(fancy: MyFancyWrapper): CrazyThing = fancy.heavyComplexObject
This needs to be in scope when the method is called.
In the comments you indicate that you want to return this so that you can chain multiple calls on the same object:
w.method1.method2.method3
Don't do this
While this is a common pattern in non-functional languages, it is bad practice is Scala for two reasons:
This pattern inherently relies on side-effects, which is the antithesis of functional programming.
It is confusing, because in Scala chaining calls in this way is used to implement a data pipeline, where the output of one function is passed as the input to the next.
It is much clearer to write separate statements so that it is obvious that the methods are being called on the same object:
w.method1()
w.method2()
w.method3()
(It is also conventional to use () when calling methods with side effects)

Is this bad style to replace map or flatMap with return and get on Try in Scala?

I'm wondering if this is a bad code style to replace map with return and get on Try for readability? Say I have some variable with Try inside it and then I need to do anything on it.
val myData: Try[String]
I can do:
myData.flatMap{
some long code
}
Or I can do:
if (myData.isFailure) return myData
val myString = myData.get
some long code that use myString
Yes I would regard this as bad style. One of the biggest gains I have made as a programmer have come from replacing statements with expressions. So I would rewrite your example using pattern matching.
myData match {
case Success(myString) =>
some long code that use myString
case Failure(_) => tFileDf
}
I understand that if-guards are very common in languages like java and C# and they even make the code easier to read in these cases. Since moving to Scala I find less cases where if-guards would improve my code. However the move to expressions has greatly improved the quality of all of my code.
Once you make this change you will gradually use less mutable state and side effects. Gradually your methods will become pure functions. They will probably become shorter. Then you will discover the benefits of total functions. These things improve all of your code where if-guards are local optimisations that will start to clash with modern scala code, and even make it error prone to change.
In the case above I would probably consider exposing the Try, this exposes the failure case more explicitly than returning a default or error value of the same return type.
Another reason that return is discouraged is that it does not alway play nicely in functions.
My advice is to embrace the more functional aspects of Scala and see where it takes you. It will take you more time to write than the equivalent in Java it pay dividends very quickly.

What are practical uses of applicative style?

I am a Scala programmer, learning Haskell now. It's easy to find practical use cases and real world examples for OO concepts, such as decorators, strategy pattern etc. Books and interwebs are filled with it.
I came to the realization that this somehow is not the case for functional concepts. Case in point: applicatives.
I am struggling to find practical use cases for applicatives. Almost all of the tutorials and books I have come across so far provide the examples of [] and Maybe. I expected applicatives to be more applicable than that, seeing all the attention they get in the FP community.
I think I understand the conceptual basis for applicatives (maybe I am wrong), and I have waited long for my moment of enlightenment. But it doesn't seem to be happening. Never while programming, have I had a moment when I would shout with a joy, "Eureka! I can use applicative here!" (except again, for [] and Maybe).
Can someone please guide me how applicatives can be used in a day-to-day programming? How do I start spotting the pattern? Thanks!
Applicatives are great when you've got a plain old function of several variables, and you have the arguments but they're wrapped up in some kind of context. For instance, you have the plain old concatenate function (++) but you want to apply it to 2 strings which were acquired through I/O. Then the fact that IO is an applicative functor comes to the rescue:
Prelude Control.Applicative> (++) <$> getLine <*> getLine
hi
there
"hithere"
Even though you explicitly asked for non-Maybe examples, it seems like a great use case to me, so I'll give an example. You have a regular function of several variables, but you don't know if you have all the values you need (some of them may have failed to compute, yielding Nothing). So essentially because you have "partial values", you want to turn your function into a partial function, which is undefined if any of its inputs is undefined. Then
Prelude Control.Applicative> (+) <$> Just 3 <*> Just 5
Just 8
but
Prelude Control.Applicative> (+) <$> Just 3 <*> Nothing
Nothing
which is exactly what you want.
The basic idea is that you're "lifting" a regular function into a context where it can be applied to as many arguments as you like. The extra power of Applicative over just a basic Functor is that it can lift functions of arbitrary arity, whereas fmap can only lift a unary function.
Since many applicatives are also monads, I feel there's really two sides to this question.
Why would I want to use the applicative interface instead of the monadic one when both are available?
This is mostly a matter of style. Although monads have the syntactic sugar of do-notation, using applicative style frequently leads to more compact code.
In this example, we have a type Foo and we want to construct random values of this type. Using the monad instance for IO, we might write
data Foo = Foo Int Double
randomFoo = do
x <- randomIO
y <- randomIO
return $ Foo x y
The applicative variant is quite a bit shorter.
randomFoo = Foo <$> randomIO <*> randomIO
Of course, we could use liftM2 to get similar brevity, however the applicative style is neater than having to rely on arity-specific lifting functions.
In practice, I mostly find myself using applicatives much in the same way like I use point-free style: To avoid naming intermediate values when an operation is more clearly expressed as a composition of other operations.
Why would I want to use an applicative that is not a monad?
Since applicatives are more restricted than monads, this means that you can extract more useful static information about them.
An example of this is applicative parsers. Whereas monadic parsers support sequential composition using (>>=) :: Monad m => m a -> (a -> m b) -> m b, applicative parsers only use (<*>) :: Applicative f => f (a -> b) -> f a -> f b. The types make the difference obvious: In monadic parsers the grammar can change depending on the input, whereas in an applicative parser the grammar is fixed.
By limiting the interface in this way, we can for example determine whether a parser will accept the empty string without running it. We can also determine the first and follow sets, which can be used for optimization, or, as I've been playing with recently, constructing parsers that support better error recovery.
I think of Functor, Applicative and Monad as design patterns.
Imagine you want to write a Future[T] class. That is, a class that holds values that are to be calculated.
In a Java mindset, you might create it like
trait Future[T] {
def get: T
}
Where 'get' blocks until the value is available.
You might realize this, and rewrite it to take a callback:
trait Future[T] {
def foreach(f: T => Unit): Unit
}
But then what happens if there are two uses for the future? It means you need to keep a list of callbacks. Also, what happens if a method receives a Future[Int] and needs to return a calculation based on the Int inside? Or what do you do if you have two futures and you need to calculate something based on the values they will provide?
But if you know of FP concepts, you know that instead of working directly on T, you can manipulate the Future instance.
trait Future[T] {
def map[U](f: T => U): Future[U]
}
Now your application changes so that each time you need to work on the contained value, you just return a new Future.
Once you start in this path, you can't stop there. You realize that in order to manipulate two futures, you just need to model as an applicative, in order to create futures, you need a monad definition for future, etc.
UPDATE: As suggested by #Eric, I've written a blog post: http://www.tikalk.com/incubator/blog/functional-programming-scala-rest-us
I finally understood how applicatives can help in day-to-day programming with that presentation:
https://web.archive.org/web/20100818221025/http://applicative-errors-scala.googlecode.com/svn/artifacts/0.6/chunk-html/index.html
The autor shows how applicatives can help for combining validations and handling failures.
The presentation is in Scala, but the author also provides the full code example for Haskell, Java and C#.
Warning: my answer is rather preachy/apologetic. So sue me.
Well, how often in your day-to-day Haskell programming do you create new data types? Sounds like you want to know when to make your own Applicative instance, and in all honesty unless you are rolling your own parser, you probably won't need to do it very much. Using applicative instances, on the other hand, you should learn to do frequently.
Applicative is not a "design pattern" like decorators or strategies. It is an abstraction, which makes it much more pervasive and generally useful, but much less tangible. The reason you have a hard time finding "practical uses" is because the example uses for it are almost too simple. You use decorators to put scrollbars on windows. You use strategies to unify the interface for both aggressive and defensive moves for your chess bot. But what are applicatives for? Well, they're a lot more generalized, so it's hard to say what they are for, and that's OK. Applicatives are handy as parsing combinators; the Yesod web framework uses Applicative to help set up and extract information from forms. If you look, you'll find a million and one uses for Applicative; it's all over the place. But since it's so abstract, you just need to get the feel for it in order to recognize the many places where it can help make your life easier.
I think Applicatives ease the general usage of monadic code. How many times have you had the situation that you wanted to apply a function but the function was not monadic and the value you want to apply it to is monadic? For me: quite a lot of times!
Here is an example that I just wrote yesterday:
ghci> import Data.Time.Clock
ghci> import Data.Time.Calendar
ghci> getCurrentTime >>= return . toGregorian . utctDay
in comparison to this using Applicative:
ghci> import Control.Applicative
ghci> toGregorian . utctDay <$> getCurrentTime
This form looks "more natural" (at least to my eyes :)
Coming at Applicative from "Functor" it generalizes "fmap" to easily express acting on several arguments (liftA2) or a sequence of arguments (using <*>).
Coming at Applicative from "Monad" it does not let the computation depend on the value that is computed. Specifically you cannot pattern match and branch on a returned value, typically all you can do is pass it to another constructor or function.
Thus I see Applicative as sandwiched in between Functor and Monad. Recognizing when you are not branching on the values from a monadic computation is one way to see when to switch to Applicative.
Here is an example taken from the aeson package:
data Coord = Coord { x :: Double, y :: Double }
instance FromJSON Coord where
parseJSON (Object v) =
Coord <$>
v .: "x" <*>
v .: "y"
There are some ADTs like ZipList that can have applicative instances, but not monadic instances. This was a very helpful example for me when understanding the difference between applicatives and monads. Since so many applicatives are also monads, it's easy to not see the difference between the two without a concrete example like ZipList.
I think it might be worthwhile to browse the sources of packages on Hackage, and see first-handedly how applicative functors and the like are used in existing Haskell code.
I described an example of practical use of the applicative functor in a discussion, which I quote below.
Note the code examples are pseudo-code for my hypothetical language which would hide the type classes in a conceptual form of subtyping, so if you see a method call for apply just translate into your type class model, e.g. <*> in Scalaz or Haskell.
If we mark elements of an array or hashmap with null or none to
indicate their index or key is valid yet valueless, the Applicative
enables without any boilerplate skipping the valueless elements while
applying operations to the elements that have a value. And more
importantly it can automatically handle any Wrapped semantics that
are unknown a priori, i.e. operations on T over
Hashmap[Wrapped[T]] (any over any level of composition, e.g. Hashmap[Wrapped[Wrapped2[T]]] because applicative is composable but monad is not).
I can already picture how it will make my code easier to
understand. I can focus on the semantics, not on all the
cruft to get me there and my semantics will be open under extension of
Wrapped whereas all your example code isn’t.
Significantly, I forgot to point out before that your prior examples
do not emulate the return value of the Applicative, which will be a
List, not a Nullable, Option, or Maybe. So even my attempts to
repair your examples were not emulating Applicative.apply.
Remember the functionToApply is the input to the
Applicative.apply, so the container maintains control.
list1.apply( list2.apply( ... listN.apply( List.lift(functionToApply) ) ... ) )
Equivalently.
list1.apply( list2.apply( ... listN.map(functionToApply) ... ) )
And my proposed syntactical sugar which the compiler would translate
to the above.
funcToApply(list1, list2, ... list N)
It is useful to read that interactive discussion, because I can't copy it all here. I expect that url to not break, given who the owner of that blog is. For example, I quote from further down the discussion.
the conflation of out-of-statement control flow with assignment is probably not desired by most programmers
Applicative.apply is for generalizing the partial application of functions to parameterized types (a.k.a. generics) at any level of nesting (composition) of the type parameter. This is all about making more generalized composition possible. The generality can’t be accomplished by pulling it outside the completed evaluation (i.e. return value) of the function, analogous to the onion can’t be peeled from the inside-out.
Thus it isn’t conflation, it is a new degree-of-freedom that is not currently available to you. Per our discussion up thread, this is why you must throw exceptions or stored them in a global variable, because your language doesn’t have this degree-of-freedom. And that is not the only application of these category theory functors (expounded in my comment in moderator queue).
I provided a link to an example abstracting validation in Scala, F#, and C#, which is currently stuck in moderator queue. Compare the obnoxious C# version of the code. And the reason is because the C# is not generalized. I intuitively expect that C# case-specific boilerplate will explode geometrically as the program grows.

The case for point free style in Scala

This may seem really obvious to the FP cognoscenti here, but what is point free style in Scala good for? What would really sell me on the topic is an illustration that shows how point free style is significantly better in some dimension (e.g. performance, elegance, extensibility, maintainability) than code solving the same problem in non-point free style.
Quite simply, it's about being able to avoid specifying a name where none is needed, consider a trivial example:
List("a","b","c") foreach println
In this case, foreach is looking to accept String => Unit, a function that accepts a String and returns Unit (essentially, that there's no usable return and it works purely through side effect)
There's no need to bind a name here to each String instance that's passed to println. Arguably, it just makes the code more verbose to do so:
List("a","b","c") foreach {println(_)}
Or even
List("a","b","c") foreach {s => println(s)}
Personally, when I see code that isn't written in point-free style, I take it as an indicator that the bound name may be used twice, or that it has some significance in documenting the code. Likewise, I see point-free style as a sign that I can reason about the code more simply.
One appeal of point-free style in general is that without a bunch of "points" (values as opposed to functions) floating around, which must be repeated in several places to thread them through the computation, there are fewer opportunities to make a mistake, e.g. when typing a variable's name.
However, the advantages of point-free are quickly counterbalanced in Scala by its meagre ability to infer types, a fact which is exacerbated by point-free code because "points" serve as clues to the type inferencer. In Haskell, with its almost-complete type inferencing, this is usually not an issue.
I see no other advantage than "elegance": It's a little bit shorter, and may be more readable. It allows to reason about functions as entities, without going mentally a "level deeper" to function application, but of course you need getting used to it first.
I don't know any example where performance improves by using it (maybe it gets worse in cases where you end up with a function when a method would be sufficient).
Scala's point-free syntax is part of the magic Scala operators-which-are-really-functions. Even the most basic operators are functions:
For example:
val x = 1
val y = x + 1
...is the same as...
val x = 1
val y = x.+(1)
...but of course, the point-free style reads more naturally (the plus appears to be an operator).

Scala versus F# question: how do they unify OO and FP paradigms?

What are the key differences between the approaches taken by Scala and F# to unify OO and FP paradigms?
EDIT
What are the relative merits and demerits of each approach? If, in spite of the support for subtyping, F# can infer the types of function arguments then why can't Scala?
I have looked at F#, doing low level tutorials, so my knowledge of it is very limited. However, it was apparent to me that its style was essentially functional, with OO being more like an add on -- much more of an ADT + module system than true OO. The feeling I get can be best described as if all methods in it were static (as in Java static).
See, for instance, any code using the pipe operator (|>). Take this snippet from the wikipedia entry on F#:
[1 .. 10]
|> List.map fib
(* equivalent without the pipe operator *)
List.map fib [1 .. 10]
The function map is not a method of the list instance. Instead, it works like a static method on a List module which takes a list instance as one of its parameters.
Scala, on the other hand, is fully OO. Let's start, first, with the Scala equivalent of that code:
List(1 to 10) map fib
// Without operator notation or implicits:
List.apply(Predef.intWrapper(1).to(10)).map(fib)
Here, map is a method on the instance of List. Static-like methods, such as intWrapper on Predef or apply on List, are much more uncommon. Then there are functions, such as fib above. Here, fib is not a method on int, but neither it is a static method. Instead, it is an object -- the second main difference I see between F# and Scala.
Let's consider the F# implementation from the Wikipedia, and an equivalent Scala implementation:
// F#, from the wiki
let rec fib n =
match n with
| 0 | 1 -> n
| _ -> fib (n - 1) + fib (n - 2)
// Scala equivalent
def fib(n: Int): Int = n match {
case 0 | 1 => n
case _ => fib(n - 1) + fib(n - 2)
}
The above Scala implementation is a method, but Scala converts that into a function to be able to pass it to map. I'll modify it below so that it becomes a method that returns a function instead, to show how functions work in Scala.
// F#, returning a lambda, as suggested in the comments
let rec fib = function
| 0 | 1 as n -> n
| n -> fib (n - 1) + fib (n - 2)
// Scala method returning a function
def fib: Int => Int = {
case n # (0 | 1) => n
case n => fib(n - 1) + fib(n - 2)
}
// Same thing without syntactic sugar:
def fib = new Function1[Int, Int] {
def apply(param0: Int): Int = param0 match {
case n # (0 | 1) => n
case n => fib.apply(n - 1) + fib.apply(n - 2)
}
}
So, in Scala, all functions are objects implementing the trait FunctionX, which defines a method called apply. As shown here and in the list creation above, .apply can be omitted, which makes function calls look just like method calls.
In the end, everything in Scala is an object -- and instance of a class -- and every such object does belong to a class, and all code belong to a method, which gets executed somehow. Even match in the example above used to be a method, but has been converted into a keyword to avoid some problems quite a while ago.
So, how about the functional part of it? F# belongs to one of the most traditional families of functional languages. While it doesn't have some features some people think are important for functional languages, the fact is that F# is function by default, so to speak.
Scala, on the other hand, was created with the intent of unifying functional and OO models, instead of just providing them as separate parts of the language. The extent to which it was succesful depends on what you deem to be functional programming. Here are some of the things that were focused on by Martin Odersky:
Functions are values. They are objects too -- because all values are objects in Scala -- but the concept that a function is a value that can be manipulated is an important one, with its roots all the way back to the original Lisp implementation.
Strong support for immutable data types. Functional programming has always been concerned with decreasing the side effects on a program, that functions can be analysed as true mathematical functions. So Scala made it easy to make things immutable, but it did not do two things which FP purists criticize it for:
It did not make mutability harder.
It does not provide an effect system, by which mutability can be statically tracked.
Support for Algebraic Data Types. Algebraic data types (called ADT, which confusingly also stands for Abstract Data Type, a different thing) are very common in functional programming, and are most useful in situations where one commonly use the visitor pattern in OO languages.
As with everything else, ADTs in Scala are implemented as classes and methods, with some syntactic sugars to make them painless to use. However, Scala is much more verbose than F# (or other functional languages, for that matter) in supporting them. For example, instead of F#'s | for case statements, it uses case.
Support for non-strictness. Non-strictness means only computing stuff on demand. It is an essential aspect of Haskell, where it is tightly integrated with the side effect system. In Scala, however, non-strictness support is quite timid and incipient. It is available and used, but in a restricted manner.
For instance, Scala's non-strict list, the Stream, does not support a truly non-strict foldRight, such as Haskell does. Furthermore, some benefits of non-strictness are only gained when it is the default in the language, instead of an option.
Support for list comprehension. Actually, Scala calls it for-comprehension, as the way it is implemented is completely divorced from lists. In its simplest terms, list comprehensions can be thought of as the map function/method shown in the example, though nesting of map statements (supports with flatMap in Scala) as well as filtering (filter or withFilter in Scala, depending on strictness requirements) are usually expected.
This is a very common operation in functional languages, and often light in syntax -- like in Python's in operator. Again, Scala is somewhat more verbose than usual.
In my opinion, Scala is unparalled in combining FP and OO. It comes from the OO side of the spectrum towards the FP side, which is unusual. Mostly, I see FP languages with OO tackled on it -- and it feels tackled on it to me. I guess FP on Scala probably feels the same way for functional languages programmers.
EDIT
Reading some other answers I realized there was another important topic: type inference. Lisp was a dynamically typed language, and that pretty much set the expectations for functional languages. The modern statically typed functional languages all have strong type inference systems, most often the Hindley-Milner1 algorithm, which makes type declarations essentially optional.
Scala can't use the Hindley-Milner algorithm because of Scala's support for inheritance2. So Scala has to adopt a much less powerful type inference algorithm -- in fact, type inference in Scala is intentionally undefined in the specification, and subject of on-going improvements (it's improvement is one of the biggest features of the upcoming 2.8 version of Scala, for instance).
In the end, however, Scala requires all parameters to have their types declared when defining methods. In some situations, such as recursion, return types for methods also have to be declared.
Functions in Scala can often have their types inferred instead of declared, though. For instance, no type declaration is necessary here: List(1, 2, 3) reduceLeft (_ + _), where _ + _ is actually an anonymous function of type Function2[Int, Int, Int].
Likewise, type declaration of variables is often unnecessary, but inheritance may require it. For instance, Some(2) and None have a common superclass Option, but actually belong to different subclases. So one would usually declare var o: Option[Int] = None to make sure the correct type is assigned.
This limited form of type inference is much better than statically typed OO languages usually offer, which gives Scala a sense of lightness, and much worse than statically typed FP languages usually offer, which gives Scala a sense of heavyness. :-)
Notes:
Actually, the algorithm originates from Damas and Milner, who called it "Algorithm W", according to the wikipedia.
Martin Odersky mentioned in a comment here that:
The reason Scala does not have Hindley/Milner type inference is
that it is very difficult to combine with features such as
overloading (the ad-hoc variant, not type classes), record
selection, and subtyping
He goes on to state that it may not be actually impossible, and it came down to a trade-off. Please do go to that link for more information, and, if you do come up with a clearer statement or, better yet, some paper one way or another, I'd be grateful for the reference.
Let me thank Jon Harrop for looking this up, as I was assuming it was impossible. Well, maybe it is, and I couldn't find a proper link. Note, however, that it is not inheritance alone causing the problem.
F# is functional - It allows OO pretty well, but the design and philosophy is functional nevertheless. Examples:
Haskell-style functions
Automatic currying
Automatic generics
Type inference for arguments
It feels relatively clumsy to use F# in a mainly object-oriented way, so one could describe the main goal as to integrate OO into functional programming.
Scala is multi-paradigm with focus on flexibility. You can choose between authentic FP, OOP and procedural style depending on what currently fits best. It's really about unifying OO and functional programming.
There are quite a few points that you can use for comparing the two (or three). First, here are some notable points that I can think of:
Syntax
Syntactically, F# and OCaml are based on the functional programming tradition (space separated and more lightweight), while Scala is based on the object-oriented style (although Scala makes it more lightweight).
Integrating OO and FP
Both F# and Scala very smoothly integrate OO with FP (because there is no contradiction between these two!!) You can declare classes to hold immutable data (functional aspect) and provide members related to working with the data, you can also use interfaces for abstraction (object-oriented aspects). I'm not as familiar with OCaml, but I would think that it puts more emphasis on the OO side (compared to F#)
Programming style in F#
I think that the usual programming style used in F# (if you don't need to write .NET library and don't have other limitations) is probably more functional and you'd use OO features only when you need to. This means that you group functionality using functions, modules and algebraic data types.
Programming style in Scala
In Scala, the default programming style is more object-oriented (in the organization), however you still (probably) write functional programs, because the "standard" approach is to write code that avoids mutation.
What are the key differences between the approaches taken by Scala and F# to unify OO and FP paradigms?
The key difference is that Scala tries to blend the paradigms by making sacrifices (usually on the FP side) whereas F# (and OCaml) generally draw a line between the paradigms and let the programmer choose between them for each task.
Scala had to make sacrifices in order to unify the paradigms. For example:
First-class functions are an essential feature of any functional language (ML, Scheme and Haskell). All functions are first-class in F#. Member functions are second-class in Scala.
Overloading and subtypes impede type inference. F# provides a large sublanguage that sacrifices these OO features in order to provide powerful type inference when these features are not used (requiring type annotations when they are used). Scala pushes these features everywhere in order to maintain consistent OO at the cost of poor type inference everywhere.
Another consequence of this is that F# is based upon tried and tested ideas whereas Scala is pioneering in this respect. This is ideal for the motivations behind the projects: F# is a commercial product and Scala is programming language research.
As an aside, Scala also sacrificed other core features of FP such as tail-call optimization for pragmatic reasons due to limitations of their VM of choice (the JVM). This also makes Scala much more OOP than FP. Note that there is a project to bring Scala to .NET that will use the CLR to do genuine TCO.
What are the relative merits and demerits of each approach? If, in spite of the support for subtyping, F# can infer the types of function arguments then why can't Scala?
Type inference is at odds with OO-centric features like overloading and subtypes. F# chose type inference over consistency with respect to overloading. Scala chose ubiquitous overloading and subtypes over type inference. This makes F# more like OCaml and Scala more like C#. In particular, Scala is no more a functional programming language than C# is.
Which is better is entirely subjective, of course, but I personally much prefer the tremendous brevity and clarity that comes from powerful type inference in the general case. OCaml is a wonderful language but one pain point was the lack of operator overloading that required programmers to use + for ints, +. for floats, +/ for rationals and so on. Once again, F# chooses pragmatism over obsession by sacrificing type inference for overloading specifically in the context of numerics, not only on arithmetic operators but also on arithmetic functions such as sin. Every corner of the F# language is the result of carefully chosen pragmatic trade-offs like this. Despite the resulting inconsistencies, I believe this makes F# far more useful.
From this article on Programming Languages:
Scala is a rugged, expressive,
strictly superior replacement for
Java. Scala is the programming
language I would use for a task like
writing a web server or an IRC client.
In contrast to OCaml [or F#], which was a
functional language with an
object-oriented system grafted to it,
Scala feels more like an true hybrid
of object-oriented and functional
programming. (That is, object-oriented
programmers should be able to start
using Scala immediately, picking up
the functional parts only as they
choose to.)
I first learned about Scala at POPL
2006 when Martin Odersky gave an
invited talk on it. At the time I saw
functional programming as strictly
superior to object-oriented
programming, so I didn't see a need
for a language that fused functional
and object-oriented programming. (That
was probably because all I wrote back
then were compilers, interpreters and
static analyzers.)
The need for Scala didn't become
apparent to me until I wrote a
concurrent HTTPD from scratch to
support long-polled AJAX for yaplet.
In order to get good multicore
support, I wrote the first version in
Java. As a language, I don't think
Java is all that bad, and I can enjoy
well-done object-oriented programming.
As a functional programmer, however,
the lack of (or needlessly verbose)
support of functional programming
features (like higher-order functions)
grates on me when I program in Java.
So, I gave Scala a chance.
Scala runs on the JVM, so I could
gradually port my existing project
into Scala. It also means that Scala,
in addition to its own rather large
library, has access to the entire Java
library as well. This means you can
get real work done in Scala.
As I started using Scala, I became
impressed by how cleverly the
functional and object-oriented worlds
blended together. In particular, Scala
has a powerful case
class/pattern-matching system that
addressed pet peeves lingering from my
experiences with Standard ML, OCaml
and Haskell: the programmer can decide
which fields of an object should be
matchable (as opposed to being forced
to match on all of them), and
variable-arity arguments are
permitted. In fact, Scala even allows
programmer-defined patterns. I write a
lot of functions that operate on
abstract syntax nodes, and it's nice
to be able to match on only the
syntactic children, but still have
fields for things such as annotations
or lines in the original program. The
case class system lets one split the
definition of an algebraic data type
across multiple files or across
multiple parts of the same file, which
is remarkably handy.
Scala also
supports well-defined multiple
inheritance through class-like devices
called traits.
Scala also allows a
considerable degree of overloading;
even function application and array
update can be overloaded. In my
experience, this tends to make my
Scala programs more intuitive and
concise.
One feature that turns out to save a
lot of code, in the same way that type
classes save code in Haskell, is
implicits. You can imagine implicits
as an API for the error-recovery phase
of the type-checker. In short, when
the type checker needs an X but got a
Y, it will check to see if there's an
implicit function in scope that
converts Y into X; if it finds one, it
"casts" using the implicit. This makes
it possible to look like you're
extending just about any type in
Scala, and it allows for tighter
embeddings of DSLs.
From the above excerpt it is clear that Scala's approach to unify OO and FP paradigms is far more superior to that of OCaml or F#.
HTH.
Regards,
Eric.
The syntax of F# was taken from OCaml but the object model of F# was taken from .NET. This gives F# a light and terse syntax that is characteristic of functional programming languages and at the same time allows F# to interoperate with the existing .NET languages and .NET libraries very smoothly through its object model.
Scala does a similar job on the JVM that F# does on the CLR. However Scala has chosen to adopt a more Java-like syntax. This may assist in its adoption by object-oriented programmers but to a functional programmer it can feel a bit heavy. Its object model is similar to Java's allowing for seamless interoperation with Java but has some interesting differences such as support for traits.
If functional programming means programming with functions, then Scala bends that a bit. In Scala, if I understand correctly, you're programming with methods instead of functions.
When the class (and the object of that class) behind the method don't matter, Scala will let you pretend it's just a function. Perhaps a Scala language lawyer can elaborate on this distinction (if it even is a distinction), and any consequences.