Matlab generating random numbers and overlap check - matlab

I wrote a code for generating random number of rods on Matlab within a specified domain and then saving the output in a text file. I would like to ask for help on adding the following options to the code;
(i) if the randomly generated rod exceeds the specified domain size, the length of that rod should be shortened so that to keep it in that particular domain.
(ii) i would like to avoid the overlapping of the newly generated number (rod) with that of the previous one, in case of overlap generate another place for the new rod.
I can't figure out how shall I do it. It would be of much help if someone may help me write code for these two options.
Thank you
% myrandom.m
% Units are mm.
% domain size
bx = 160;
by = 40;
bz = 40;
lf = 12; % rod length
nf = 500; % Number of rods
rns = rand(nf,3); % Start
rne = rand(nf,3)-0.5; % End
% Start Points
for i = 1:nf
rns(i,1) = rns(i,1)*bx;
rns(i,2) = rns(i,2)*by;
rns(i,3) = rns(i,3)*bz;
end
% Unit Deltas
delta = zeros(nf,1);
for i = 1:nf
temp = rne(i,:);
delta(i) = norm(temp);
end
% Length Deltas
rne = lf*rne./delta;
% End Points
rne = rns + rne;
fileID = fopen('scfibers.txt','w');
for i = 1:nf
fprintf(fileID,'%12.8f %12.8f %12.8f\r\n',rns(i,1),rns(i,2),rns(i,3));
fprintf(fileID,'%12.8f %12.8f %12.8f\r\n\r\n',rne(i,1),rne(i,2),rne(i,3));
end
fclose(fileID);

I would start from writing a function that creates the random rods:
function [rns,rne] = myrandom(domain,len,N)
rns = rand(N,3).*domain; % Start --> rns = bsxfun(#times,rand(N,3),domain)
rne = rand(N,3)-0.5; % End
% Unit Deltas
delta = zeros(N,1);
for k = 1:N
delta(k) = norm(rne(k,:));
end
% Length Deltas
rne = len*rne./delta; % --> rne = len*bsxfun(#rdivide,rne,delta)
% End Points
rne = rns + rne;
% remove rods the exceed the domain:
notValid = any(rne>domain,2); % --> notValid = any(bsxfun(#gt,rne,domain),2);
rns(notValid,:)=[];
rne(notValid,:)=[];
end
This function gets the domain as [bx by bz] and also the length of the rods as len, and N the number of rods to generate. Note that using elementwise multiplication (.*) I have eliminated the first for loop.
In case you use MATLAB version prior to 2016b, you need to use bsxfun:
In MATLAB® R2016b and later, the built-in binary functions listed in this table independently support implicit expansion.
The affected lines are marked with --> in the code (with the alternative).
The last three lines in the function remove from the result all the rodes that exceed the domain size (I hope I got you correctly on this).
Next, I call this function within a script:
% domain size
bx = 160;
by = 40;
bz = 40;
domain = [bx by bz];
lf = 12; % rod length
nf = 500; % Number of rods
[rns,rne] = myrandom(domain,lf,nf);
u = unique([rns rne],'rows');
remain = nf-size(u,1);
while remain>0
[rns_temp,rne_temp] = myrandom(domain,lf,remain);
rns = [rns;rns_temp];
rne = [rne;rne_temp];
u = unique([rns rne],'rows');
remain = nf-size(u,1);
end
After the basic definitions, the function is called and returns rne and rns, which are probably smaller than nf. Then we check for duplicates, and store all unique rods in u. We calculate the rods remain to compute, and we use a while loop to generate new rods as needed. In each iteration of the loop, we add the newly created rods to those we have in rne and rns, and check how many unique vectors we have now, and if there are enough we quit the loop (then you can add printing to the file).
Note that:
I was not sure what you mean by "in case of overlap generate another place for the new rod" - do you want to have more than nf rods if some are duplicates, that from which nf are unique (what the code above does)? or you want to remove the duplicates and remain only with nf unique rods? In the case of the latter option, I would insert the unique function part into the function that creates the rods myrandom.
The wile loop as written above is not efficient since no preallocating of memory is done. I'm not sure that this is possible if you just want to create more rods but keep the duplicates, but if not (the second option in 1 above) and if you are going to use this allot, then preallocating is very recommended.

Related

Fast way to get mean values of rows accordingly to subscripts

I have a data, which may be simulated in the following way:
N = 10^6;%10^8;
K = 10^4;%10^6;
subs = randi([1 K],N,1);
M = [randn(N,5) subs];
M(M<-1.2) = nan;
In other words, it is a matrix, where the last row is subscripts.
Now I want to calculate nanmean() for each subscript. Also I want to save number of rows for each subscript. I have a 'dummy' code for this:
uniqueSubs = unique(M(:,6));
avM = nan(numel(uniqueSubs),6);
for iSub = 1:numel(uniqueSubs)
tmpM = M(M(:,6)==uniqueSubs(iSub),1:5);
avM(iSub,:) = [nanmean(tmpM,1) size(tmpM,1)];
end
The problem is, that it is too slow. I want it to work for N = 10^8 and K = 10^6 (see commented part in the definition of these variables.
How can I find the mean of the data in a faster way?
This sounds like a perfect job for findgroups and splitapply.
% Find groups in the final column
G = findgroups(M(:,6));
% function to apply per group
fcn = #(group) [mean(group, 1, 'omitnan'), size(group, 1)];
% Use splitapply to apply fcn to each group in M(:,1:5)
result = splitapply(fcn, M(:, 1:5), G);
% Check
assert(isequaln(result, avM));
M = sortrows(M,6); % sort the data per subscript
IDX = diff(M(:,6)); % find where the subscript changes
tmp = find(IDX);
tmp = [0 ;tmp;size(M,1)]; % add start and end of data
for iSub= 2:numel(tmp)
% Calculate the mean over just a single subscript, store in iSub-1
avM2(iSub-1,:) = [nanmean(M(tmp(iSub-1)+1:tmp(iSub),1:5),1) tmp(iSub)-tmp(iSub-1)];tmp(iSub-1)];
end
This is some 60 times faster than your original code on my computer. The speed-up mainly comes from presorting the data and then finding all locations where the subscript changes. That way you do not have to traverse the full array each time to find the correct subscripts, but rather you only check what's necessary each iteration. You thus calculate the mean over ~100 rows, instead of first having to check in 1,000,000 rows whether each row is needed that iteration or not.
Thus: in the original you check numel(uniqueSubs), 10,000 in this case, whether all N, 1,000,000 here, numbers belong to a certain category, which results in 10^12 checks. The proposed code sorts the rows (sorting is NlogN, thus 6,000,000 here), and then loop once over the full array without additional checks.
For completion, here is the original code, along with my version, and it shows the two are the same:
N = 10^6;%10^8;
K = 10^4;%10^6;
subs = randi([1 K],N,1);
M = [randn(N,5) subs];
M(M<-1.2) = nan;
uniqueSubs = unique(M(:,6));
%% zlon's original code
avM = nan(numel(uniqueSubs),7); % add the subscript for comparison later
tic
uniqueSubs = unique(M(:,6));
for iSub = 1:numel(uniqueSubs)
tmpM = M(M(:,6)==uniqueSubs(iSub),1:5);
avM(iSub,:) = [nanmean(tmpM,1) size(tmpM,1) uniqueSubs(iSub)];
end
toc
%%%%% End of zlon's code
avM = sortrows(avM,7); % Sort for comparison
%% Start of Adriaan's code
avM2 = nan(numel(uniqueSubs),6);
tic
M = sortrows(M,6);
IDX = diff(M(:,6));
tmp = find(IDX);
tmp = [0 ;tmp;size(M,1)];
for iSub = 2:numel(tmp)
avM2(iSub-1,:) = [nanmean(M(tmp(iSub-1)+1:tmp(iSub),1:5),1) tmp(iSub)-tmp(iSub-1)];
end
toc %tic/toc should not be used for accurate timing, this is just for order of magnitude
%%%% End of Adriaan's code
all(avM(:,1:6) == avM2) % Do the comparison
% End of script
% Output
Elapsed time is 58.561347 seconds.
Elapsed time is 0.843124 seconds. % ~70 times faster
ans =
1×6 logical array
1 1 1 1 1 1 % i.e. the matrices are equal to one another

Updating histogram in a for-loop without growing y-data

I have had zero luck finding this elsewhere on the site, so here's my problem. I loop through about a thousand mat files, each with about 10,000 points of data. I'm trying to create an overall histogram of this data, but it's not very feasible to concatenate all this data to give to hist.
I was hoping to be able to create an N and Bin variable each loop using hist (y), then N and Bin would be recalculated on the next loop iteration by using hist(y_new). And so on and so on. That way the source data doesn't grow and when the loop finally ends, I can just use bar(). If this method wouldn't work, then I am very open-minded to other solutions.
Also, it is probably not safe to assume that the x data will remain constant throughout each iteration. I'm using 2012a.
Thanks for any help!!
I think the best solution here is to loop through your files twice: once to set the bins and once to do the histogram. But, if this is impossible in your case, here's a one shot solution that requires you to set the bin width beforehand.
clear; close all;
rng('default') % for reproducibility
% make example data
N = 10; % number of data files
M = 5; % length of data files
xs = cell(1,N);
for i = 1:N
xs{i} = trnd(1,1,M);
end
% parameters
width = 2;
% main
for i = 1:length(xs)
x = xs{i}; % "load data"
range = [min(x) max(x)];
binsPos = 0:width:range(2)+width;
binsNeg = fliplr( 0:-width:range(1)-width );
newBins = [binsNeg(1:end-1) binsPos];
newCounts = histc(x, newBins);
newCounts(end) = []; % last bin should always be zero, see help histc
if i == 1
counts = newCounts;
bins = newBins;
else
% combine new and old counts
allBins = min(bins(1), newBins(1)) : width : max(bins(end), newBins(end));
allCounts = zeros(1,length(allBins)-1);
allCounts(find(allBins==bins(1)) : find(allBins==bins(end-1))) = counts;
allCounts(find(allBins==newBins(1)) : find(allBins==newBins(end-1))) = ...
allCounts(find(allBins==newBins(1)) : find(allBins==newBins(end-1))) + newCounts;
bins = allBins;
counts = allCounts;
end
end
% check
figure
bar(bins(1:end-1) + width/2, counts)
xFull = [xs{:}];
[fullCounts] = histc(xFull, bins);
fullCounts(end) = [];
figure
bar(bins(1:end-1) + width/2, fullCounts)

PCA codes input, use for PalmPrint Recognition

I'm new to Matlab.
I'm trying to apply PCA function(URL listed below)into my palm print recognition program to generate the eigenpalms. My palm print grey scale images dimension are 450*400.
Before using it, I was trying to study these codes and add some codes to save the eigenvector as .mat file. Some of the %comments added by me for my self understanding.
After a few days of studying, I still unable to get the answers.
I decided to ask for helps.I have a few questions to ask regarding this PCA.m.
PCA.m
What is the input of the "options" should be? of "PCA(data,details,options)"
(is it an integer for reduced dimension? I was trying to figure out where is the "options" value passing, but still unable to get the ans. The msgbox of "h & h2", is to check the codes run until where. I was trying to use integer of 10, but the PCA.m processed dimension are 400*400.)
The "eigvector" that I save as ".mat" file is ready to perform Euclidean distance classifier with other eigenvector? (I'm thinking that eigvector is equal to eigenpalm, like in face recognition, the eigen faces. I was trying to convert the eigenvector matrix back to image, but the image after PCA process is in Black and many dots on it)
mySVD.m
In this function, there are two values that can be changed, which are MAX_MATRIX_SIZE set by 1600 and EIGVECTOR_RATIO set by 0.1%. May I know these values will affect the results? ( I was trying to play around with the values, but I cant see the different. My palm print image dimension is set by 450*400, so the Max_matrix_size should set at 180,000?)
** I hope you guys able to understand what I'm asking, please help, Thanks guys (=
Original Version : http://www.cad.zju.edu.cn/home/dengcai/Data/code/PCA.m
mySVD: http://www.cad.zju.edu.cn/home/dengcai/Data/code/mySVD.m
% Edited Version by me
function [eigvector, eigvalue] = PCA(data,details,options)
%PCA Principal Component Analysis
%
% Usage:
% [eigvector, eigvalue] = PCA(data, options)
% [eigvector, eigvalue] = PCA(data)
%
% Input:
% data - Data matrix. Each row vector of fea is a data point.
% fea = finite element analysis ?????
% options.ReducedDim - The dimensionality of the reduced subspace. If 0,
% all the dimensions will be kept.
% Default is 0.
%
% Output:
% eigvector - Each column is an embedding function, for a new
% data point (row vector) x, y = x*eigvector
% will be the embedding result of x.
% eigvalue - The sorted eigvalue of PCA eigen-problem.
%
% Examples:
% fea = rand(7,10);
% options=[]; %store an empty matrix in options
% options.ReducedDim=4;
% [eigvector,eigvalue] = PCA(fea,4);
% Y = fea*eigvector;
%
% version 3.0 --Dec/2011
% version 2.2 --Feb/2009
% version 2.1 --June/2007
% version 2.0 --May/2007
% version 1.1 --Feb/2006
% version 1.0 --April/2004
%
% Written by Deng Cai (dengcai AT gmail.com)
%
if (~exist('options','var'))
%A = exist('name','kind')
% var = Checks only for variables.
%http://www.mathworks.com/help/matlab/matlab_prog/symbol-reference.html#bsv2dx9-1
%The tilde "~" character is used in comparing arrays for unequal values,
%finding the logical NOT of an array,
%and as a placeholder for an input or output argument you want to omit from a function call.
options = [];
end
h2 = msgbox('not yet');
ReducedDim = 0;
if isfield(options,'ReducedDim')
%tf = isfield(S, 'fieldname')
h2 = msgbox('checked');
ReducedDim = options.ReducedDim;
end
[nSmp,nFea] = size(data);
if (ReducedDim > nFea) || (ReducedDim <=0)
ReducedDim = nFea;
end
if issparse(data)
data = full(data);
end
sampleMean = mean(data,1);
data = (data - repmat(sampleMean,nSmp,1));
[eigvector, eigvalue] = mySVD(data',ReducedDim);
eigvalue = full(diag(eigvalue)).^2;
if isfield(options,'PCARatio')
sumEig = sum(eigvalue);
sumEig = sumEig*options.PCARatio;
sumNow = 0;
for idx = 1:length(eigvalue)
sumNow = sumNow + eigvalue(idx);
if sumNow >= sumEig
break;
end
end
eigvector = eigvector(:,1:idx);
end
%dt get from C# program, user ID and name
evFolder = 'ev\';
userIDName = details; %get ID and Name
userIDNameWE = strcat(userIDName,'\');%get ID and Name with extension
filePath = fullfile('C:\Users\***\Desktop\Data Collection\');
userIDNameFolder = strcat(filePath,userIDNameWE); %ID and Name folder
userIDNameEVFolder = strcat(userIDNameFolder,evFolder);%EV folder in ID and Name Folder
userIDNameEVFile = strcat(userIDNameEVFolder,userIDName); % EV file with ID and Name
if ~exist(userIDNameEVFolder, 'dir')
mkdir(userIDNameEVFolder);
end
newFile = strcat(userIDNameEVFile,'_1');
searchMat = strcat(newFile,'.mat');
if exist(searchMat, 'file')
filePattern = strcat(userIDNameEVFile,'_');
D = dir([userIDNameEVFolder, '*.mat']);
Num = length(D(not([D.isdir])))
Num=Num+1;
fileName = [filePattern,num2str(Num)];
save(fileName,'eigvector');
else
newFile = strcat(userIDNameEVFile,'_1');
save(newFile,'eigvector');
end
You pass options in a structure, for instance:
options.ReducedDim = 2;
or
options.PCARatio =0.4;
The option ReducedDim selects the number of dimensions you want to use to represent the final projection of the original matrix. For instance if you pick option.ReducedDim = 2 you use only the two eigenvectors with largest eigenvalues (the two principal components) to represent your data (in effect the PCA will return the two eigenvectors with largest eigenvalues).
PCARatio instead allows you to pick the number of dimensions as the first eigenvectors with largest eigenvalues that account for fraction PCARatio of the total sum of eigenvalues.
In mySVD.m, I would not increase the default values unless you expect more than 1600 eigenvectors to be necessary to describe your dataset. I think you can safely leave the default values.

intermittent loops in matlab

Hello again logical friends!
I’m aware this is quite an involved question so please bear with me! I think I’ve managed to get it down to two specifics:- I need two loops which I can’t seem to get working…
Firstly; The variable rollers(1).ink is a (12x1) vector containing ink values. This program shares the ink equally between rollers at each connection. I’m attempting to get rollers(1).ink to interact with rollers(2) only at specific timesteps. The ink should transfer into the system once for every full revolution i.e. nTimesSteps = each multiple of nBins_max. The ink should not transfer back to rollers(1).ink as the system rotates – it should only introduce ink to the system once per revolution and not take any back out. Currently I’ve set rollers(1).ink = ones but only for testing. I’m truly stuck here!
Secondly; The reason it needs to do this is because at the end of the sim I also wish to remove ink in the form of a printed image. The image should be a reflection of the ink on the last roller in my system and half of this value should be removed from the last roller and taken out of the system at each revolution. The ink remaining on the last roller should be recycled and ‘re-split’ in the system ready for the next rotation.
So…I think it’s around the loop beginning line86 where I need to do all this stuff. In pseudo, for the intermittent in-feed I’ve been trying something like:
For k = 1:nTimeSteps
While nTimesSteps = mod(nTimeSteps, nBins_max) == 0 % This should only output when nTimeSteps is a whole multiple of nBins_max i.e. one full revolution
‘Give me the ink on each segment at each time step in a matrix’
End
The output for averageAmountOfInk is the exact format I would like to return this data except I don’t really need the average, just the actual value at each moment in time. I keep getting errors for dimensional mismatches when I try to re-create this using something like:
For m = 1:nTimeSteps
For n = 1:N
Rollers(m,n) = rollers(n).ink’;
End
End
I’ll post the full code below if anyone is interested to see what it does currently. There’s a function at the end also which of course needs to be saved out to a separate file.
I’ve posted variations of this question a couple of times but I’m fully aware it’s quite a tricky one and I’m finding it difficult to get my intent across over the internets!
If anyone has any ideas/advice/general insults about my lack of programming skills then feel free to reply!
%% Simple roller train
% # Single forme roller
% # Ink film thickness = 1 micron
clc
clear all
clf
% # Initial state
C = [0,70; % # Roller centres (x, y)
10,70;
21,61;
11,48;
21,34;
27,16;
0,0
];
R = [5.6,4.42,9.8,6.65,10.59,8.4,23]; % # Roller radii (r)
% # Direction of rotation (clockwise = -1, anticlockwise = 1)
rotDir = [1,-1,1,-1,1,-1,1]';
N = numel(R); % # Amount of rollers
% # Find connected rollers
isconn = #(m, n)(sum(([1, -1] * C([m, n], :)).^2)...
-sum(R([m, n])).^2 < eps);
[Y, X] = meshgrid(1:N, 1:N);
conn = reshape(arrayfun(isconn, X(:), Y(:)), N, N) - eye(N);
% # Number of bins for biggest roller
nBins_max = 50;
nBins = round(nBins_max*R/max(R))';
% # Initialize roller struct
rollers = struct('position',{}','ink',{}','connections',{}',...
'rotDirection',{}');
% # Initialise matrices for roller properties
for ii = 1:N
rollers(ii).ink = zeros(1,nBins(ii));
rollers(ii).rotDirection = rotDir(ii);
rollers(ii).connections = zeros(1,nBins(ii));
rollers(ii).position = 1:nBins(ii);
end
for ii = 1:N
for jj = 1:N
if(ii~=jj)
if(conn(ii,jj) == 1)
connInd = getConnectionIndex(C,ii,jj,nBins(ii));
rollers(ii).connections(connInd) = jj;
end
end
end
end
% # Initialize averageAmountOfInk and calculate initial distribution
nTimeSteps = 1*nBins_max;
averageAmountOfInk = zeros(nTimeSteps,N);
inkPerSeg = zeros(nTimeSteps,N);
for ii = 1:N
averageAmountOfInk(1,ii) = mean(rollers(ii).ink);
end
% # Iterate through timesteps
for tt = 1:nTimeSteps
rollers(1).ink = ones(1,nBins(1));
% # Rotate all rollers
for ii = 1:N
rollers(ii).ink(:) = ...
circshift(rollers(ii).ink(:),rollers(ii).rotDirection);
end
% # Update all roller-connections
for ii = 1:N
for jj = 1:nBins(ii)
if(rollers(ii).connections(jj) ~= 0)
index1 = rollers(ii).connections(jj);
index2 = find(ii == rollers(index1).connections);
ink1 = rollers(ii).ink(jj);
ink2 = rollers(index1).ink(index2);
rollers(ii).ink(jj) = (ink1+ink2)/2;
rollers(index1).ink(index2) = (ink1+ink2)/2;
end
end
end
% # Calculate average amount of ink on each roller
for ii = 1:N
averageAmountOfInk(tt,ii) = sum(rollers(ii).ink);
end
end
image(5:20) = (rollers(7).ink(5:20))./2;
inkPerSeg1 = [rollers(1).ink]';
inkPerSeg2 = [rollers(2).ink]';
inkPerSeg3 = [rollers(3).ink]';
inkPerSeg4 = [rollers(4).ink]';
inkPerSeg5 = [rollers(5).ink]';
inkPerSeg6 = [rollers(6).ink]';
inkPerSeg7 = [rollers(7).ink]';
This is an extended comment rather than a proper answer, but the comment box is a bit too small ...
Your code overwhelms me, I can't see the wood for the trees. I suggest that you eliminate all the stuff we don't need to see to help you with your immediate problem (all those lines drawing figures for example) -- I think it will help you to debug your code yourself to put all that stuff into functions or scripts.
Your code snippet
For k = 1:nTimeSteps
While nTimesSteps = mod(nTimeSteps, nBins_max) == 0
‘Give me the ink on each segment at each time step in a matrix’
End
might be (I don't quite understand your use of the while statement, the word While is not a Matlab keyword, and as you have written it the value returned by the statement doesn't change from iteration to iteration) equivalent to
For k = 1:nBins_max:nTimeSteps
‘Give me the ink on each segment at each time step in a matrix’
End
You seem to have missed an essential feature of Matlab's colon operator ...
1:8 = [1 2 3 4 5 6 7 8]
but
1:2:8 = [1 3 5 7]
that is, the second number in the triplet is the stride between successive elements.
Your matrix conn has a 1 at the (row,col) where rollers are connected, and a 0 elsewhere. You can find the row and column indices of all the 1s like this:
[ri,ci] = find(conn==1)
You could then pick up the (row,col) locations of the 1s without the nest of loops and if statements that begins
for ii = 1:N
for jj = 1:N
if(ii~=jj)
if(conn(ii,jj) == 1)
I could go on, but won't, that's enough for one comment.

Rolling window for averaging using MATLAB

I have the following code, pasted below. I would like to change it to only average the 10 most recently filtered images and not the entire group of filtered images. The line I think I need to change is: Yout(k,p,q) = (Yout(k,p,q) + (y.^2))/2;, but how do I do it?
j=1;
K = 1:3600;
window = zeros(1,10);
Yout = zeros(10,column,row);
figure;
y = 0; %# Preallocate memory for output
%Load one image
for i = 1:length(K)
disp(i)
str = int2str(i);
str1 = strcat(str,'.mat');
load(str1);
D{i}(:,:) = A(:,:);
%Go through the columns and rows
for p = 1:column
for q = 1:row
if(mean2(D{i}(p,q))==0)
x = 0;
else
if(i == 1)
meanvalue = mean2(D{i}(p,q));
end
%Calculate the temporal mean value based on previous ones.
meanvalue = (meanvalue+D{i}(p,q))/2;
x = double(D{i}(p,q)/meanvalue);
end
%Filtering for 10 bands, based on the previous state
for k = 1:10
[y, ZState{k}] = filter(bCoeff{k},aCoeff{k},x,ZState{k});
Yout(k,p,q) = (Yout(k,p,q) + (y.^2))/2;
end
end
end
% for k = 2:10
% subplot(5,2,k)
% subimage(Yout(k)*5000, [0 100]);
% colormap jet
% end
% pause(0.01);
end
disp('Done Loading...')
The best way to do this (in my opinion) would be to use a circular-buffer to store your images. In a circular-, or ring-buffer, the oldest data element in the array is overwritten by the newest element pushed in to the array. The basics of making such a structure are described in the short Mathworks video Implementing a simple circular buffer.
For each iteration of you main loop that deals with a single image, just load a new image into the circular-buffer and then use MATLAB's built in mean function to take the average efficiently.
If you need to apply a window function to the data, then make a temporary copy of the frames multiplied by the window function and take the average of the copy at each iteration of the loop.
The line
Yout(k,p,q) = (Yout(k,p,q) + (y.^2))/2;
calculates a kind of Moving Average for each of the 10 bands over all your images.
This line calculates a moving average of meanvalue over your images:
meanvalue=(meanvalue+D{i}(p,q))/2;
For both you will want to add a buffer structure that keeps only the last 10 images.
To simplify it, you can also just keep all in memory. Here is an example for Yout:
Change this line: (Add one dimension)
Yout = zeros(3600,10,column,row);
And change this:
for q = 1:row
[...]
%filtering for 10 bands, based on the previous state
for k = 1:10
[y, ZState{k}] = filter(bCoeff{k},aCoeff{k},x,ZState{k});
Yout(i,k,p,q) = y.^2;
end
YoutAvg = zeros(10,column,row);
start = max(0, i-10+1);
for avgImg = start:i
YoutAvg(k,p,q) = (YoutAvg(k,p,q) + Yout(avgImg,k,p,q))/2;
end
end
Then to display use
subimage(Yout(k)*5000, [0 100]);
You would do sth. similar for meanvalue