Inductive types carrying proofs - coq

There is this one exercise in "Software Foundations" that I've been trying to solve correctly for some time now but I've actually hit a wall in terms of trying to write down the function being asked for. Here is the relevant part of the exercise
Consider a different, more efficient representation of natural numbers
using a binary rather than unary system. That is, instead of saying
that each natural number is either zero or the successor of a natural
number, we can say that each binary number is either
zero,
twice a binary number, or
one more than twice a binary number.
(a) First, write an inductive definition of the type bin corresponding
to this description of binary numbers.
The naive definition doesn't quite work because you end up being able to construct terms that add 1 to a number that already had 1 added to it or multiplying zero with 2 for no good reason. In order to avoid those I figured I would encode some kind of state transition into the constructors to avoid those but this is kinda tricky so this was the best I could come up with
Inductive tag : Type := z | nz | m. (* zero | nonzero | multiply by 2 *)
Inductive bin_nat : tag -> Type :=
(* zero *)
| Zero : bin_nat z
(* nonzero *)
| One : bin_nat nz
(* multiply by 2 -> nonzero *)
| PlusOne : bin_nat m -> bin_nat nz
(* nonzero | multiply by 2 -> multiply by 2 *)
| Multiply : forall {t : tag}, (t = m \/ t = nz) -> bin_nat t -> bin_nat m.
With the above representation I avoid the issues of terms that don't make sense but now I have to carry around proofs whenever I multiply by 2. I actually have no idea how to use these things in recursive functions though.
I know how to construct the proofs and the terms and they look like this
(* nonzero *)
Definition binr (t : tag) := or_intror (t = m) (eq_refl nz).
(* multiply by 2 *)
Definition binl (t : tag) := or_introl (t = nz) (eq_refl tag m).
(* some terms *)
Check Zero.
Check One.
Check (Multiply (binr _) One).
Check (Multiply (binl _) (Multiply (binr _) One)).
Check PlusOne (Multiply (binl _) (Multiply (binr _) One)).
I can also write down a "proof" of the theorem that I want to correspond to a function but I don't know how to actually convert it to a function. Here's the proof for the conversion function
Definition binary_to_nat : forall t : tag, bin_nat t -> nat.
Proof.
intros.
einduction H as [ | | b | t proof b ].
{ exact 0. } (* Zero *)
{ exact 1. } (* One *)
{ exact (S (IHb b)). } (* PlusOne *)
{ (* Multiply *)
edestruct t.
cut False.
intros F.
case F.
case proof.
intros F.
inversion F.
intros F.
inversion F.
exact (2 * (IHb b)).
exact (2 * (IHb b)).
}
Defined.
I know this term is the function I want because I can verify that I get the right answers when I compute with it
Section Examples.
Example a : binary_to_nat z Zero = 0.
Proof.
lazy.
trivial.
Qed.
Example b : binary_to_nat nz One = 1.
Proof.
lazy.
trivial.
Qed.
Example c : binary_to_nat m ((Multiply (binl _) (Multiply (binr _) One))) = 4.
Proof.
lazy.
trivial.
Qed.
End Examples.
So finally the question, is there an easy way to convert the above proof term to an actual function in a simple way or do I have to try to reverse engineer the proof term?

I like your idea of representing a valid binary number using states and an indexed inductive type. However, as the question indicates, it's possible to get away with just three constructors on the inductive type: zero, multiply by 2, and multiply by 2 and add one. That means that the only transition we need to avoid is multiplying zero by 2.
Inductive tag : Type := z | nz. (* zero | nonzero *)
Inductive bin_nat : tag -> Type :=
(* zero *)
| Zero : bin_nat z
(* multiply by 2 *)
| TimesTwo : bin_nat nz -> bin_nat nz
(* multiply by 2 and add one *)
| TimesTwoPlusOne : forall {t : tag}, bin_nat t -> bin_nat nz.
Then, for example,
Let One := TimesTwoPlusOne Zero. (* 1 *)
Let Two := TimesTwo One. (* 10 *)
Let Three := TimesTwoPlusOne One. (* 11 *)
Let Four := TimesTwo Two. (* 100 *)
So TimesTwo adds a zero to the end of the binary representation and TimesTwoPlusOne adds a one.
If you want to try this yourself, don't look any further.
(I would have put this in spoiler tags, but apparently code blocks in spoiler tags are glitchy)
Incrementing a binary number.
Fixpoint bin_incr {t: tag} (n: bin_nat t): bin_nat nz :=
match n with
| Zero => One
| TimesTwo n' => TimesTwoPlusOne n'
| #TimesTwoPlusOne _ n' => TimesTwo (bin_incr n')
end.
A helper definition for converting nat to binary.
Definition nat_tag (n: nat): tag :=
match n with
| 0 => z
| S _ => nz
end.
Converting nat to binary.
Fixpoint nat_to_bin (n: nat): bin_nat (nat_tag n) :=
match n with
| 0 => Zero
| S n' => bin_incr (nat_to_bin n')
end.
Converting binary to nat. Note that this uses the notations for multiplication and addition of natural numbers. If this doesn't work, you may not have the right scopes open.
Fixpoint bin_to_nat {t: tag} (n: bin_nat t): nat :=
match n with
| Zero => 0
| TimesTwo n' => 2 * (bin_to_nat n')
| #TimesTwoPlusOne _ n' => 1 + 2 * (bin_to_nat n')
end.
We get actual functions from these definitions (note that 20 is 10100 in binary).
Compute nat_to_bin 20.
= TimesTwo
(TimesTwo (TimesTwoPlusOne (TimesTwo (TimesTwoPlusOne Zero))))
: bin_nat (nat_tag 20)
Compute bin_to_nat (nat_to_bin 20).
= 20
: nat
One further technical note. I used this code on two versions of Coq (8.6 and 8.9+alpha) and one version demanded that I put the tag in explicitly when matching on TimesTwoPlusOne, while the other allowed it to stay implicit. The above code should work in either case.

Related

Computing with a finite subset of an infinite representation in Coq

I have a function Z -> Z -> whatever which I treat as a sort of a map from (Z, Z) to whatever, let's type it as FF.
With whatever being a simple sum constructible from nix or inj_whatever.
This map I initialize with some data, in the fashion of:
Definition i (x y : Z) (f : FF) : FF :=
fun x' y' =>
if andb (x =? x') (y =? y')
then inj_whatever
else f x y.
The =? represents boolean decidable equality on Z, from Coq's ZArith.
Now I would like to have equality on two of such FFs, I don't mind invoking functional_extensionality. What I would like to do now is to have Coq computationally decide equality of two FFs.
For example, suppose we do something along the lines of:
Definition empty : FF := fun x y => nix.
Now we add some arbitrary values to make foo and foo', those are equivalent under functional extensionality:
Definition foo := i 0 0 (i 0 (-42) (i 56 1 empty)).
Definition foo' := i 0 (-42) (i 56 1 (i 0 0 empty)).
What is a good way to automatically have Coq determine foo = foo'. Ltac level stuff? Actual terminating computation? Do I need domain restriction to a finite one?
The domain restriction is a bit of an intricate one. I manipulate the maps in a way f : FF -> FF, where f can extend the subset of Z x Z that the computation is defined on. As such, come to think of it, it can't be f : FF -> FF, but more like f : FF -> FF_1 where FF_1 is a subset of Z x Z that is extended by a small constant. As such, when one applies f n times, one ends up with FF_n which is equivalent to domain restriction of FF plus n * constant to the domain. So the function f slowly (by a constant factor) expands the domain FF is defined on.
As I said in the comment more specifics are needed in order to elaborate a satisfactory answer. See the below example --- intended for a step by step description --- on how to play with equality on restricted function ranges using mathcomp:
From mathcomp Require Import all_ssreflect all_algebra.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
(* We need this in order for the computation to work. *)
Section AllU.
Variable n : nat.
(* Bounded and unbounded fun *)
Definition FFb := {ffun 'I_n -> nat}.
Implicit Type (f : FFb).
Lemma FFP1 f1 f2 : reflect (f1 = f2) [forall x : 'I_n, f1 x == f2 x].
Proof. exact/(equivP eqfunP)/ffunP. Qed.
Lemma FFP2 f1 f2 :
[forall x : 'I_n, f1 x == f2 x] = all [fun x => f1 x == f2 x] (enum 'I_n).
Proof.
by apply/eqfunP/allP=> [eqf x he|eqf x]; apply/eqP/eqf; rewrite ?enumT.
Qed.
Definition f_inj (f : nat -> nat) : FFb := [ffun x => f (val x)].
Lemma FFP3 (f1 f2 : nat -> nat) :
all [fun x => f1 x == f2 x] (iota 0 n) -> f_inj f1 = f_inj f2.
Proof.
move/allP=> /= hb; apply/FFP1; rewrite FFP2; apply/allP=> x hx /=.
by rewrite !ffunE; apply/hb; rewrite mem_iota ?ltn_ord.
Qed.
(* Exercise, derive bounded eq from f_inj f1 = f_inj f2 *)
End AllU.
The final lemma should indeed allow you reduce equality of functions to a computational, fully runnable Gallina function.
A simpler version of the above, and likely more useful to you is:
Lemma FFP n (f1 f2 : nat -> nat) :
[forall x : 'I_n, f1 x == f2 x] = all [pred x | f1 x == f2 x] (iota 0 n).
Proof.
apply/eqfunP/allP=> eqf x; last by apply/eqP/eqf; rewrite mem_iota /=.
by rewrite mem_iota; case/andP=> ? hx; have /= -> := eqf (Ordinal hx).
Qed.
But it depends on how you (absent) condition on range restriction is specified.
After your edit, I think I should add a note on the more general topic of map equality, indeed you can define a more specific type of maps other than A -> B and then build a decision procedure.
Most typical map types [including the ones in the stdlib] will work, as long as they support the operation of "binding retrieval", so you can reduce equality to the check of finitely-many bound values.
In fact, the maps in Coq's standard library do already provide you such computational equality function.
Ok, this is a rather brutal solution which does not attempt to avoid doing the same case distinctions multiple times but it's fully automated.
We start with a tactic which inspects whether two integers are equal (using Z.eqb) and translates the results to a proposition which omega can deal with.
Ltac inspect_eq y x :=
let p := fresh "p" in
let q := fresh "q" in
let H := fresh "H" in
assert (p := proj1 (Z.eqb_eq x y));
assert (q := proj1 (Z.eqb_neq x y));
destruct (Z.eqb x y) eqn: H;
[apply (fun p => p eq_refl) in p; clear q|
apply (fun p => p eq_refl) in q; clear p].
We can then write a function which fires the first occurence of i it can find. This may introduce contradictory assumptions in the context e.g. if a previous match has revealed x = 0 but we now call inspect x 0, the second branch will have both x = 0 and x <> 0 in the context. It will be automatically dismissed by omega.
Ltac fire_i x y := match goal with
| [ |- context[i ?x' ?y' _ _] ] =>
unfold i at 1; inspect_eq x x'; inspect_eq y y'; (omega || simpl)
end.
We can then put everything together: call functional extensionality twice, repeat fire_i until there's nothing else to inspect and conclude by reflexivity (indeed all the branches with contradictions have been dismissed automatically!).
Ltac eqFF :=
let x := fresh "x" in
let y := fresh "y" in
intros;
apply functional_extensionality; intro x;
apply functional_extensionality; intro y;
repeat fire_i x y; reflexivity.
We can see that it discharges your lemma without any issue:
Lemma foo_eq : foo = foo'.
Proof.
unfold foo, foo'; eqFF.
Qed.
Here is a self-contained gist with all the imports and definitions.

'else' in definitions - Coq

First of all I'm new to proof theory and coq, so I'd appreciate answers to be easy to understand.
I'm trying to build up definitions to eventually define prime numbers; I'm currently trying to define divisibility, and in my definition I've written the true cases.
Every nat is divisible with 1.
Every nat is divisible with itself.
And my inductive case (applyable when '(i > j)' ):
Every nat 'i' is divisible by 'j' if '(i - j)' is divisible by 'j'.
Now in some of my subsequent lemmas I need that everything not fulfilling this is false.
How would I go about encoding this in my definition?
I'm thinking something alike, when none of the above is applicable --> false.
- In a sense an else statement for definitions.
In constructive logic, which Coq is built upon, a proposition is only considered "true" when we have direct evidence, i.e. proof. So, one doesn't need such "else" part, because anything that cannot be constructed is in a sense false. If none of the cases for your "is divisible by" relation are applicable, you'll be able to prove your statement by contradiction, i.e. derive False.
For example, if we have this definition of divisibility:
(* we assume 0 divides 0 *)
Inductive divides (m : nat) : nat -> Prop :=
| div_zero: divides m 0
| div_add: forall n, divides m n -> divides m (m + n).
Notation "( x | y )" := (divides x y) (at level 0).
Then we can prove the fact that 3 does not divide 5, using inversion, which handles the impossible cases:
Fact three_does_not_divide_five:
~(3 | 5).
Proof.
intro H. inversion H. inversion H2.
Qed.
Note: we can check that our divides relation captures the notion of divisibility by introducing an alternative ("obvious") definition:
Definition divides' x y := exists z, y = z*x.
Notation "( x |' y )" := (divides' x y) (at level 0).
and proving their equivalence:
Theorem divides_iff_divides' (m n : nat) :
(m | n) <-> (m |' n).
Admitted. (* it's not hard *)
A different approach is to define divisibility from with division and remainder:
Define a divn : nat -> nat -> nat * nat operation that divides two numbers and returns the remainder.
Then, divisibility is expressed as "remainder is equal to 0". You'll need to work out some details, such as what happens with 0.
Then, a falsified divisibility hypothesis amounts to a false equality which can be usually solved by congruence. You can manipulate the equality with the standard theory for the remainder.
This is the approach used in the math-comp library, see http://math-comp.github.io/math-comp/htmldoc/mathcomp.ssreflect.div.html

Inductive definition for family of types

I have been struggling on this for a while now. I have an inductive type:
Definition char := nat.
Definition string := list char.
Inductive Exp : Set :=
| Lit : char -> Exp
| And : Exp -> Exp -> Exp
| Or : Exp -> Exp -> Exp
| Many: Exp -> Exp
from which I define a family of types inductively:
Inductive Language : Exp -> Set :=
| LangLit : forall c:char, Language (Lit c)
| LangAnd : forall r1 r2: Exp, Language(r1) -> Language(r2) -> Language(And r1 r2)
| LangOrLeft : forall r1 r2: Exp, Language(r1) -> Language(Or r1 r2)
| LangOrRight : forall r1 r2: Exp, Language(r2) -> Language(Or r1 r2)
| LangEmpty : forall r: Exp, Language (Many r)
| LangMany : forall r: Exp, Language (Many r) -> Language r -> Language (Many r).
The rational here is that given a regular expression r:Exp I am attempting to represent the language associated with r as a type Language r, and I am doing so with a single inductive definition.
I would like to prove:
Lemma L1 : forall (c:char)(x:Language (Lit c)),
x = LangLit c.
(In other words, the type Language (Lit c) has only one element, i.e. the language of the regular expression 'c' is made of the single string "c". Of course I need to define some semantics converting elements of Language r to string)
Now the specifics of this problem are not important and simply serve to motivate my question: let us use nat instead of Exp and let us define a type List n which represents the lists of length n:
Parameter A:Set.
Inductive List : nat -> Set :=
| ListNil : List 0
| ListCons : forall (n:nat), A -> List n -> List (S n).
Here again I am using a single inductive definition to define a family of types List n.
I would like to prove:
Lemma L2: forall (x: List 0),
x = ListNil.
(in other words, the type List 0 has only one element).
I have run out of ideas on this one.
Normally when attempting to prove (negative) results with inductive types (or predicates), I would use the elim tactic (having made sure all the relevant hypothesis are inside my goal (generalize) and only variables occur in the type constructors). But elim is no good in this case.
If you are willing to accept more than just the basic logic of Coq, you can just use the dependent destruction tactic, available in the Program library (I've taken the liberty of rephrasing your last example in terms of standard-library vectors):
Require Coq.Vectors.Vector.
Require Import Program.
Lemma l0 A (v : Vector.t A 0) : v = #Vector.nil A.
Proof.
now dependent destruction v.
Qed.
If you inspect the term, you'll see that this tactic relied on the JMeq_eq axiom to get the proof to go through:
Print Assumptions l0.
Axioms:
JMeq_eq : forall (A : Type) (x y : A), x ~= y -> x = y
Fortunately, it is possible to prove l0 without having to resort to features outside of Coq's basic logic, by making a small change to the statement of the previous lemma.
Lemma l0_gen A n (v : Vector.t A n) :
match n return Vector.t A n -> Prop with
| 0 => fun v => v = #Vector.nil A
| _ => fun _ => True
end v.
Proof.
now destruct v.
Qed.
Lemma l0' A (v : Vector.t A 0) : v = #Vector.nil A.
Proof.
exact (l0_gen A 0 v).
Qed.
We can see that this new proof does not require any additional axioms:
Print Assumptions l0'.
Closed under the global context
What happened here? The problem, roughly speaking, is that in Coq we cannot perform case analysis on terms of dependent types whose indices have a specific shape (such as 0, in your case) directly. Instead, we must prove a more general statement where the problematic indices are replaced by variables. This is exactly what the l0_gen lemma is doing. Notice how we had to make the match on n return a function that abstracts on v. This is another instance of what is known as "convoy pattern". Had we written
match n with
| 0 => v = #Vector.nil A
| _ => True
end.
Coq would see the v in the 0 branch as having type Vector.t A n, making that branch ill-typed.
Coming up with such generalizations is one of the big pains of doing dependently typed programming in Coq. Other systems, such as Agda, make it possible to write this kind of code with much less effort, but it was only recently shown that this can be done without relying on the extra axioms that Coq wanted to avoid including in its basic theory. We can only hope that this will be simplified in future versions.

Stuck in the construction of a very simple function

I am learning Coq. I am stuck on a quite silly problem (which has no motivation, it is really silly). I want to build a function from ]2,+oo] to the set of integers mapping x to x-3. That should be simple... In any language I know, it is simple. But not in Coq. First, I write (I explain with a lot of details so that someone can explain what I don't understand in the behaviour of Coq)
Definition f : forall n : nat, n > 2 -> nat.
I get a subgoal
============================
forall n : nat, n > 2 -> nat
which means that Coq wants a map from a proof of n>2 to the set of integers. Fine. So I want to tell it that n = 3 + p for some integer p, and then return the integer p. I write :
intros n H.
And I get the context/subgoal
n : nat
H : n > 2
============================
nat
Then i suppose that I have proved n = 3 + p for some integer p by
cut(exists p, 3 + p = n).
I get the context/subgoal
n : nat
H : n > 2
============================
(exists p : nat, 3 + p = n) -> nat
subgoal 2 (ID 6) is:
exists p : nat, 3 + p = n
I move the hypothesis in the context by
intro K.
I obtain:
n : nat
H : n > 2
K : exists p : nat, 3 + p = n
============================
nat
subgoal 2 (ID 6) is:
exists p : nat, 3 + p = n
I will prove the existence of p later. Now I want to finish the proof by exact p. So i need first to do a
destruct K as (p,K).
and I obtain the error message
Error: Case analysis on sort Set is not allowed for inductive
definition ex.
And I am stuck.
You are absolutely right! Writing this function should be easy in any reasonable programming language, and, fortunately, Coq is no exception.
In your case, it is much easier to define your function by simply ignoring the proof argument you are supplying:
Definition f (n : nat) : nat := n - 3.
You may then wonder "but wait a second, the natural numbers aren't closed under subtraction, so how can this make sense?". Well, in Coq, subtraction on the natural numbers isn't really subtraction: it is actually truncated. If you try to subtract, say, 3 from 2, you get 0 as an answer:
Goal 2 - 3 = 0. reflexivity. Qed.
What this means in practice is that you are always allowed to "subtract" two natural numbers and get a natural number back, but in order for this subtraction make sense, the first argument needs to be greater than the second. We then get lemmas such as the following (available in the standard library):
le_plus_minus_r : forall n m, n <= m -> n + (m - n) = m
In most cases, working with a function that is partially correct, such as this definition of subtraction, is good enough. If you want, however, you can restrict the domain of f to make its properties more pleasant. I've taken the liberty of doing the following script with the ssreflect library, which makes writing this kind of function easier:
Require Import Ssreflect.ssreflect Ssreflect.ssrfun Ssreflect.ssrbool.
Require Import Ssreflect.ssrnat Ssreflect.eqtype.
Definition f (n : {n | 2 < n}) : nat :=
val n - 3.
Definition finv (m : nat) : {n | 2 < n} :=
Sub (3 + m) erefl.
Lemma fK : cancel f finv.
Proof.
move=> [n Pn] /=; apply/val_inj=> /=.
by rewrite /f /= addnC subnK.
Qed.
Lemma finvK : cancel finv f.
Proof.
by move=> n; rewrite /finv /f /= addnC addnK.
Qed.
Now, f takes as an argument a natural number n that is greater than 2 (the {x : T | P x} form is syntax sugar for the sig type from the standard library, which is used for forming types that work like subsets). By restricting the argument type, we can write an inverse function finv that takes an arbitrary nat and returns another number that is greater than 2. Then, we can prove lemmas fK and finvK, which assert that fK and finvK are inverses of each other.
On the definition of f, we use val, which is ssreflect's idiom for extracting the element out of a member of a type such as {n | 2 < n}. The Sub function on finv does the opposite, packaging a natural number n with a proof that 2 < n and returning an element of {n | 2 < n}. Here, we rely crucially on the fact that the < is expressed in ssreflect as a boolean computation, so that Coq can use its computation rules to check that erefl, a proof of true = true, is also a valid proof of 2 < 3 + m.
To conclude, the mysterious error message you got in the end has to do with Coq's rules governing computational types, with live in Type, and propositional types, which live in Prop. Coq's rules forbid you from using proofs of propositions to build elements that have computational content (such as natural numbers), except in very particular cases. If you wanted, you could still finish your definition by using {p | 3 + p = n} instead of exists p, 3 + p = n -- both mean the same thing, except the former lives in Type while the latter lives in Prop.

Coordinates in Coq

I apologize if this is obviously posted somewhere, but I have been trying Google search and SO search and found nothing on this yet.
Part A.
Is there a standard library for defining coordinates/vectors and points in R^2 and R^3 in Coq? I pretty much want to do standard stuff, like adding vectors, cross products, scaling, etc.
If not, how is this for a start:
Require Import Coq.Reals.Reals.
Inductive Coordinate2 : Type := Point2: R -> R -> Coordinate2.
Definition R2plus (u:Coordinate2) (v:Coordinate2) : Coordinate2 :=
match u, v with
| (Point2 ux uy),(Point2 vx vy)=>(Point2 ((ux+vx)%R) ((uy+vy)%R))
end.
(* etc. *)
Notation "x + y" := (R2plus x y).
Also, why when I run:
Eval compute in ((2%R) < (3%R))%R.
Do I get
= (2 < 3)%R
: Prop
rather than
True
or something?
Part B.
Is this even a good idea? I want to build an algorithm which computes some things using real numbers, and prove the algorithm correct in Coq. Is Coq.Reals.Reals the right thing to be using, or is it really too abstract?
Instead of defining Coordinate2 you could also use (R * R)%type, list R, or t R 2, where t A n, defined in Vector, is a list of size n.
You might want to give your notations a scope and a delimiting key to avoid clashes with other notations.
Notation "x + y" := (R2plus x y) : r2_scope.
Delimit Scope r2_scope with R2.
Eval compute in ((Point2 0 1) + (Point2 2 3))%R2.
Prop, Set, and Type are sorts, which means something of type Prop might be defined inductively.
For example, for the nats, le is defined as
Inductive le : nat -> nat -> Prop :=
| le_n : forall n, le n n
| le_S : forall n m : nat, le n m -> le n (S m).
2 <= 2 is true because it's inhabited by le_n 2
2 <= 3 is true because it's inhabited by le_S 2 2 (le_n 2)
2 <= 4 is true because it's inhabited by le_S 2 3 (le_S 2 2 (le_n 2))
3 <= 2 is false because it's not inhabited
For 2 <= 3 to reduce to True, le would have to be defined like, for example,
Fixpoint le (n m : nat) : Prop :=
match n with
| 0 => True
| S n =>
match m with
| 0 => False
| S m => le n m
end
end.
Coq's definition of Rplus and Rlt are actually axioms. To check the definition of something use the Print command.
To answer part B, I guess it depends on how well you understand mathematical analysis and the various ways of defining the reals. If you're more familiar with numerical methods, you might want to use the rationals instead.