how can I compare syntax objects in racket? - racket

I'd like to compare the code contents of two syntax objects and ignore things like contexts. Is converting them to datum the only way to do so? Like:
(equal? (syntax->datum #'(x+1)) (syntax->datum #'(x+1)))

If you want to compare both objects without deconstructing them at all, then yes.
HOWEVER, the problem with this method is that it only compares the datum attached to two syntax objects, and won't actually compare their binding information.
The analogy that I've heard (from Ryan Culpepper), is this is kind of like taking two paintings, draining of them of their color, and seeing if they are identical. While they might be similar in some ways, you will miss a lot of differences from the different colors.
A better approach (although it does require some work), is to use syntax-e to destruct the syntax object into more primitive lists of syntax objects, and do this until you get identifiers (basically a syntax object whose datum is a symbol), from there, you can generally use free-identifier=? (and sometimes bound-identifier=? to see if each identifier can bind each other, and identifier-binding to compare module level identifiers.
The reason why there isn't a single simple predicate to compare two arbitrary syntax objects is because, generally, there isn't really one good definition for what makes two pieces of code equal, even if you only care about syntactic equality. For example, using the functions referenced above doesn't track internal bindings in a syntax object, so you will still get a very strict definition of what it means to be 'equal'. that is, both syntax objects have the same structure with identifiers that are either bound to the same module, or are free-identifier=?.
As such, before you use this answer, I highly recommend you take a step back and make sure this is really what you want to do. Once in a blue moon it is, but most of the time you actually are trying to solve a similar, yet simpler, problem.

Here's a concrete example of one possible way you could do the "better approach" Leif Andersen mentioned.
I have used this in multiple places for testing purposes, though if anyone wanted to use it in non-test code, they would probably want to re-visit some of the design decisions.
However, things like the equal?/recur pattern used here should be helpful no matter how you decide to define what equality means.
Some of the decisions you might want to make different choices on:
On identifiers, do you want to check that the scopes are exactly the same (bound-identifier=?), or would you want to assume that they would be bound outside of the syntax object and check that they are bound to the same thing, even if they have different scopes (free-identifier=?)? Note that if you choose the first one, then checking the results of macro expansion will sometimes return #false because of scope differences, but if you choose the second one, then if any identifier is not bound outside of the syntax object, then it would be as if you only care about symbol=? equality on names, so it will return #true in some places where it shouldn't. I chose the first one bound-identifier=? here because for testing, a "false positive" where the test fails is better than a "false negative" where the tests succeeds in cases it shouldn't.
On source locations, do you want to check that they are equal, or do you want to ignore them? This code ignores them because it's only for testing purposes, but if you want equality only for things which have the same source location, you might want to check that using functions like build-source-location-list.
On syntax properties, do you want to check that they are equal, or do you want to ignore them? This code ignores them because it's only for testing purposes, but if you want to check that you might want to use functions like syntax-property-symbol-keys.
Finally here is the code. It may not be exactly what you want depending on how you answered the questions above. However, its structure and how it uses equal?/recur might be helpful to you.
(require rackunit)
;; Works on fully wrapped, non-wrapped, and partially
;; wrapped values, and it checks that the inputs
;; are wrapped in all the same places. It checks scopes,
;; but it does not check source location.
(define-binary-check (check-stx=? stx=? actual expected))
;; Stx Stx -> Bool
(define (stx=? a b)
(cond
[(and (identifier? a) (identifier? b))
(bound-identifier=? a b)]
[(and (syntax? a) (syntax? b))
(and (bound-identifier=? (datum->syntax a '||) (datum->syntax b '||))
(stx=? (syntax-e a) (syntax-e b)))]
[else
(equal?/recur a b stx=?)]))

Related

Lisp source code rewriting system

I would like to take Emacs Lisp code that has been macro expanded and unmacro expand it. I have asked this on the Emacs forum with no success. See:
https://emacs.stackexchange.com/questions/35913/program-rewriting-systems-unexpanded-a-defmacro-given-a-list-of-macros-to-undo
However one would think that this kind of thing, S-expression transformation, is right up Lisp's alley. And defmacro is I believe available in Lisp as it is in Emacs Lisp.
So surely there are program transformation systems, or term-rewriting systems that can be adapted here.
Ideally, in certain situations such a tool would be able to work directly off the defmacro to do its pattern find and replace on. However even if I have to come up with specific search and replace patterns manually to add to the transformation system, having such a framework to work in would still be useful
Summary of results so far: Although there have been a few answers that explore interesting possibilities, right now there is nothing definitive. So I think best to leave this open. I'll summarize some of the suggestions. (I've upvoted all the answers that were in fact answers instead of commentary on the difficulty.)
First, many people suggest considered the special form of macros that do expansion only,or as Drew puts it:
macro-expansion (i.e., not expansion followed by Lisp evaluation).
Macro-expansion is another way of saying reduction semantics, or
rewriting.
The current front-runner to my mind is in phils post where he uses a pattern-matching facility that seems specific to Emacs: pcase. I will be exploring this and will post results of my findings. If anyone else has thoughts on this please chime in.
Drew wrote a program called FTOC whose purpose was to convert Franz Lisp to Common Lisp; googling turns up a comp.lang.lisp posting
I found a Common Lisp package called optima with fare-quasiquote. Paulo thinks however this might not be powerful enough since it doesn't handle backtracking out of the box, but might be programmed in by hand. Although the generality of backtracking might be nice, I'm not convinced I need that for the most-used situations.)
Side note: Some seem put off by the specific application causing my initial interest. (But note that in research, it is not uncommon for good solutions to get applied in ways not initially envisioned.)
So in that spirit, here are a couple of suggestions for changing the end application. A good solution for these would probably translate to a solution for Emacs Lisp. (And if if helps you to pretend I'm not interested in Emacs Lisp, that's okay with me). Instead of a decompiler for Emacs Lisp, suppose I want to write a decompiler for clojure or some Common Lisp system. Or as suggested by Sylwester's answer, suppose I would like to automatically refactor my code by taking into account the benefit of using more concise macros that exist or that have gotten improved. Recall that at one time Emacs Lisp didn't have "when" or "unless" macros.
30-some years ago I did something similar, using macrolet.
(Actually, I used defmacro because we had only an early implementation of Common Lisp, which did not yet have macrolet. But macrolet is the right thing to use.)
I didn't translate macro-expanded code to what it was expanded from, but the idea is pretty much the same. You will come across some different difficulties, I expect, since your translation is even farther away from one-to-one.
I wrote a translator from (what was then) Franz Lisp to Common Lisp, to help with porting lots of existing code to a Lisp+Prolog-machine project. Franz Lisp back then was only dynamically scoped, while Common Lisp is (in general) lexically scoped.
And yes, obviously there is no general way to automatically translate Lisp code (in particular), especially considering that it can generate and then evaluate other code - but even ignoring that special case. Many functions are quite similar, but there is the lexical/dynamic difference, as well as significant differences in the semantics of some seemingly similar functions.
All of that has to be understood and taken for granted from the outset, by anyone wanting to make use of the results of translation.
Still, much that is useful can be done. And if the resulting code is self-documenting, telling you what it was derived from etc., then when in the resulting context you can decide just what to do with this or that bit that might be tricky (e.g., rewrite it manually, from scratch or just tweak it). In practice, lots of code was easily converted from Franz to Common - it saved much reprogramming effort.
The translator program was written in Common Lisp. It could be used interactively as well as in batch. When used interactively it provided, in effect, a Franz Lisp interpreter on top of Common Lisp.
The program used only macro-expansion (i.e., not expansion followed by Lisp evaluation). Macro-expansion is another way of saying reduction semantics, or rewriting.
Input Franz-Lisp code was macro-expanded via function-definition mapping macros to produce Common-Lisp code. Code that was problematic for translation was flagged (in code) with a description/analysis that described the situation.
The program was called FTOC. I think you can still find it, or at least references to it, by googling (ftoc lisp). (It was the first Lisp program I wrote, and I still have fond memories of the experience. It was a good way to learn both Lisp dialects and to learn Lisp in general.)
Have fun!
In general, I don't think you can do this. The expansion of an lisp macro is Turing complete, so you have to be able to predict the output of a program which could have arbitrary input.
There are some simple things that you could do. defmacros with backquoted forms in appear fairly similar in the output form and might be detected. This sort of heuristic would probably get you a long way.
What I don't understand is your use case. The macro-expanded version of a piece of code is usually only present in the compiled (or in emacs-lisp byte-compiled) form.
Ok so other people have pointed out the fact that this problem is impossible in general. There are two hard parts to this problem: one is that it could be a lot of work to find a preimage of some code fragment through a macro and it is also impossible to determine whether a macro was called or not—there are examples where one may write code which could have come from a macro without using that macro. Imagine for the sake of illustration an sha macro which expands to the SHA hash of the string literal passed to it. Then if you see some sha hash in your expanded code, it would obviously be silly to try to unexpand it. But it may be that the hash was put into the code as a literal, e.g. referencing a specific point in the history of a git repository so it would also be unhelpful to unexpand the macro.
Tractable subproblems
Let me preface this by saying that whilst these may be a little tractable, I still wouldn’t try to solve this problem.
Let’s ignore all the macros that do weird things (like the example above) and all the macros that are just as likely to not have been used in the original (e.g. cond vs if) and all the macros which generate complex code which seems like it would be difficult to unravel (e.g. loop, do, and backquote. Annoyingly these difficult cases are some of those which you would perhaps most want to unexpand). The type this leaves us with (that I’d like to focus on) are macros which basically just reduce boilerplate, e.g. save-excursion or with-XXXX. These are macros whose implementation consists of possibly making some fresh symbols (via gensym) and then having a big simple backquoted block of code. I still think it would be too hard to automatically go from defmacro to a function for unexpansion but I think you could attack some of these on a case-by-case basis. Do this by looking for the forms generated by the macro that delimit (I.e. begin/end) the expanded code. I can’t really offer much beyond that. This is still a hard problem and I don’t think any existing solutions (to other problems) will get you very far on your way.
A further complication I understand is that you do not start at the macroexpanded code but rather at the bytecode. Without knowing anything about the elisp compiler, I worry that more information would be lost in the compilation step and you would have to undo that as well, e.g. perhaps it is hard to determine which code goes inside a let or even when a let begins, or bytecode starts using goto type features even though elisp doesn’t have them.
You suggest that the reason you would like to unexpand macros is so you can decompile bytecode which sometimes comes up in the Emacs debugger and that this would be useful as even though the source code is available in theory, it isn’t always at your fingertips. I put it to you that if you want to make your life debugging elisp easier it would be more worthwhile to figure out how to have the Emacs debugger always take you to the source code for internal functions. This might involve installing extra debugging related packages or downloading the Emacs source code and setting some variable so Emacs knows where to find it or compiling Emacs yourself from source. I don’t really know about that but I bet getting thrown into bytecode instead of source would have been enough of a problem for Emacs developers over the past thirty years that a solution to that problem does exist.
If however what you really want to do is to try to implement a decompiler for elisp then I suppose that’s what you should do. A final observation is that while Lisp provides facilities which make manipulating Lisp code easy, this doesn’t help much with decompiling as all these facilities can be used in compilation so there are infinitely more patterns one might want to detect than in e.g. a C decompiler. Perhaps scheme style macros would be easier to unexpand, although they would still be hard.
If you’re decompiling because you want to give a better idea of which exact subexpression rather than line is being evaluated (normally Lisp debuggers work on expressions not lines anyway) in the debugger then perhaps it would actually be useful to see the code at the expanded level rather than the unexpanded one. Or perhaps it would be best to see both and maybe in between as well. Keeping track of what’s what through forwards macroexpansion is already difficult and fiddly. Doing it in reverse certainly won’t be easier. Good luck!
Edit: seeing as your not currently using Lisp anyway, I wonder if you might have more success using something like prolog for your unexpanding. You’d still have to manually write rules but I think it would be a large amount of work to try to derive rules from macro definitions.
I would like to take Emacs Lisp code that has been macro expanded and unmacro expand it.
Macros generate arbitrary expressions, which may contain macros recursively. You have no general way to revert the transformations, because it's not pattern-based.
Even if macros were pattern-based, they could still be infinite.
Even if macros were not infinite, they can certainly contain bugs in expansions of patterns that never matched. Given arbitrary code to try to unwind, it could match an expansion that looks like the code and try to revert to its pattern. Without bugs, you could still abuse this.
Even if you could revert macro expansion, some macros expand to the same code. An approach could be signalling a warning with a restart when all reversions expand equally minus the operator, such that if the restart doesn't handle the signal, it would choose the first expansion; and otherwise signalling an error with a restart, such that if the restart doesn't handle the signal, it errors. Or you could configure it to choose certain macros under certain conditions, such as in which package the code was found.
In practice, there are very few cases where reverting an expansion makes any sense. It could be a useful development tool that suggests macros, but I wouldn't generally rely on it for whole source transformations.
One way you could achieve what you want is through a controlled pattern matching. You could initially create patterns manually, which would already handle cases you care about directly, such as the ones you mention:
(if (not <cond>) <expr>) and (if (not <cond>) (progn <&expr>)) to (unless <cond> <&expr>)
You'd have to decide whether null would be equivalent to not. I personally don't mix the boolean meaning of nil with that of empty list or something else, e.g. no result, nothing found, null object, a designator, etc. But perhaps Lisp code as old as that in Emacs just uses them interchangeably.
(if <cond> <expr>) and (if <cond> (progn <&expr>)) to (when <cond> <&expr>)
If you feel like improving code overall, include cond with a single condition. And be careful with cond clauses with only the condition.
You should have a few dozen more, to see how the pattern matching behaves with more patterns to match in terms of time (CPU) and space (memory).
From the description of fare-quasiquote, optima doesn't support backtracking, which you probably want.
But you can do backtracking with optima by yourself, using recursion on complex inner patterns, and if nothing matches, return a control value to keep searching for matching patterns from the outer input.
Another approach is to treat a pattern as a description of a state machine, and handle each new token to advance the current state machines until one of them reaches the end, discarding the state machines that couldn't advance. This approach may consume more memory, depending on the amount of patterns, the similarity between patterns (if many have the same starting token, many state machines will be generated on a matching token), the length of the patterns and, last but not least, the length of the input (s-expression).
An advantage of this approach is that you can use it interactively to see which patterns have matched the most tokens, and you can give weights to patterns instead of just taking the first that matches.
A disadvantage is that, most probably, you'll have to spend effort to develop it.
EDIT: I just lousily described a kind of trie or radix tree.
Once you got something working, maybe try to obtain patterns automatically. This is really hard, you must probably limit it to simple backquoting and accept the fact you can't generalize for anything that contains more complex code.
I believe the hardest will be code walking, which is hard enough with source code, but much more with macro-expanded code. Perhaps if you could expand the whole picture a bit further to understand the goal, maybe someone could suggest a better approach other than operating on macro-expanded code.
However one would think that this kind of thing, S-expression transformation, is right up Lisp's alley. And defmacro is I believe available in Lisp as it is in Emacs Lisp.
So surely there are program transformation systems, or term-rewriting systems that can be adapted here.
There's a huge step from expanding code with defmacro and all that generality. Most Lisp developers will know about hygienic macros, at least in terms of symbols as variables.
But there's still hygienic macros in terms of symbols as operators1, code walking, interaction with a containing macro (usually using macrolet), etc. It's way too complex.
1.
Common Lisp evaluates the operator in a compound form in the lexical environment, and probably everyone makes macros that assume that the global macro or function definition of a symbol will be used.
But it might not be so:
(defmacro my-macro-1 ()
`1)
(defmacro my-macro-2 ()
`(my-function (my-macro-1)))
(defun my-function (n)
(* n 100))
(macrolet ((my-macro-1 ()
`2))
(flet ((my-function (n)
(* n 1000)))
(my-macro-2)))
That last line will expand to (my-function (my-macro-2)), which will be recursively expanded to (my-function 2). When evaluated, it will yield 2000.
For proper operator hygiene, you'd have to do something like this:
(defmacro my-macro-2 ()
;; capture global bindings of my-macro-1 and my-function-1 by name
(flet ((my-macro-1-global (form env)
(funcall (macro-function 'my-macro-1) form env))
(my-function-global (&rest args)
;; hope the compiler can optimize this
(apply 'my-function args)))
;; store them globally in uninterned symbols
;; hopefully, no one will mess with them
(let ((my-macro-1-symbol (gensym (symbol-name 'my-macro-1)))
(my-function-symbol (gensym (symbol-name 'my-function))))
(setf (macro-function my-macro-1-symbol) #'my-macro-1-global)
(setf (symbol-function my-function-symbol) #'my-function-global)
`(,my-function-symbol (,my-macro-1-symbol)))))
With this definition, the example will yield 100.
Common Lisp has some restrictions to avoid this, but it only states the consequences are undefined when (re)defining symbols in the common-lisp package, globally or locally. It doesn't require errors or warnings to be signaled.
I don't think it is possible to do this in general, but you can undo a pattern back into a macro use for every match if you supply code for each unmacroing. Code that mixed cond and if will end up being just if and your code would remove all if into cond making the reverse not the same as the starting point. The more macros you have and the more they expand into each other the more uncertain of the end result will be of the starting point.
You could have rules such that if is not translated into cond unless you used one of the features, like more than one predicate or implicit progn, but you have no idea if the coder actually did use cond everywhere because he liked in consistent regardless. Thus your unmacroing will acyually be more of a simplification.
I don't believe there's a general solution to that, and you certainly
can't guarantee that the structure of the output would match that of
the original code, and I'm not going near the idea of auto-generating
patterns and desired transformations from macro definitions; but you
might achieve a simple version of this with Emacs' own pcase pattern
matching facility.
Here's the simplest example I could think of:
With reference to the definition of when:
(defmacro when (cond &rest body)
(list 'if cond (cons 'progn body)))
We can transform code using a pcase pattern like so:
(let ((form '(if (and foo bar baz) (progn do (all the) things))))
(pcase form
(`(if ,cond (progn . ,body))
`(when ,cond ,#body))
(_ form)))
=> (when (and foo bar baz) do (all the) things)
Obviously if the macro definitions change, then your patterns will
cease to work (but that's a pretty safe kind of failure).
Caveat: This is the first time I've written a pcase form, and I
don't know what I don't know. It seems to work as intended, though.

Using match with user defined types in PL Racket

The following PL code does not work under #lang pl:
Edited code according to Alexis Kings answer
(define-type BINTREE
[Leaf Number]
[Node BINTREE BINTREE])
(: retrieve-leaf : BINTREE -> Number)
(define (retrieve-leaf btree)
(match btree
[(Leaf number) number])
What i'd like to achieve is as follows:
Receive a BINTREE as input
Check whether the tree is simply a leaf
Return the leaf numerical value
This might be a basic question but how would I go about solving this?
EDIT: The above seems to work if cases is used instead of match.
Why is that?
As you've discovered, match and cases are two similar but separate
things. The first is used for general Racket values, and the second is
used for things that you defined with define-type. Unfortunately,
they don't mix well in either direction, so if you have a defined type
then you need to use cases.
As for the reason for that, it's kind of complicated... One thing is
that the pl language was made well before match was powerful enough
to deal with arbitrary values conveniently. It does now, but it cannot
be easily tweaked to do what cases does: the idea behind define-type
is to make programming simple by making it mandatory to use just
cases for such values --- there are no field accessors, no predicates
for the variants (just for the whole type), and certainly no mutation.
Still, it is possible to do anything you need with just cases. If you
read around, the core idea is to mimic disjoint union types in HM
languages like ML and Haskell, and with only cases pattern matching
available, many functions are easy to start since there's a single way
to deal with them.
match and Typed Racket got closer to being able to do these things,
but it's still not really powerful enough to do all of that --- which is
why cases will stay separate from match in the near future.
As a side note, this is in contrast to what I want --- I know that this
is often a point of confusion, so I'd love to have just match used
throughout. Maybe I'll break at some point and hack things so that
cases is also called match, and the contents of the branches would
be used to guess if you really need the real match or the cases
version. But that would really be a crude hack.
I think you're on the right track, but your match syntax isn't correct. It should look like this:
(: retrieve-leaf : BINTREE -> Number)
(define (retrieve-leaf btree)
(match btree
[(Leaf number) number]))
The match pattern clauses must be inside the match form. Additionally, number is just a binding, not a procedure, so it doesn't need to be in parens.

good style in lisp: cons vs list

Is it good style to use cons for pairs of things or would it be preferable to stick to lists?
like for instance questions and answers:
(list
(cons
"Favorite color?"
"red")
(cons
"Favorite number?"
"123")
(cons
"Favorite fruit?"
"avocado"))
I mean, some things come naturally in pairs; there is no need for something that can hold more than two, so I feel like cons would be the natural choice. However, I also feel like I should be sticking to one thing (lists).
What would be the better or more accepted style?
What you have there is an association list (alist). Alist entries are, indeed, often simple conses rather than lists (though that is a matter of preference: some people use lists for alist entries too), so what you have is fine. Though, I usually prefer to use literal syntax:
'(("Favorite color?" . "red")
("Favorite number?" . "123")
("Favorite fruit?" . "avocado"))
Alists usually use a symbol as the key, because symbols are interned, and so symbol alists can be looked up using assq instead of assoc. Here's how it might look:
'((color . "red")
(number . "123")
(fruit . "avocado"))
The default data-structure for such case should be a HASH-TABLE.
An association list of cons pairs is also a possible variant and was widely used historically. It is a valid variant, because of tradition and simplicity. But you should not use it, when the number of pairs exceeds several (probably, 10 is a good threshold), because search time is linear, while in hash-table it is constant.
Using a list for this task is also possible, but will be both ugly and inefficient.
You would need to decide for yourself based upon circumstances. There isn't a universal answer. Different tasks work differently with structures. Consider the following:
It is faster to search in a hash-table for keys, then it is in the alist.
It is easier to have an iterator and save its state, when working with alist (hash-table would need to export all of its keys as an array or a list and have a pointer into that list, while it is enough to only remember the pointer into alist to be able to restore the iterator's state and continue the iteration.
Alist vs list: they use the same amount of conses for even number of elements, given all other characters are atoms. When using lists vs alists you would have to thus make sure there isn't an odd number of elements (and you may discover it too late), which is bad.
But there are a lot more functions, including the built-in ones, which work on proper lists, and don't work on alists. For example, nth will error on alist, if it hits the cdr, which is not a list.
Some times certain macros would not function as you'd like them to with alists, for example, this:
(destructuring-bind (a b c d)
'((100 . 200) (300 . 400))
(format t "~&~{~s~^,~}" (list a b c d)))
will not work as you might've expected.
On the other hand, certain procedures may be "tricked" into doing something which they don't do for proper lists. For instance, when copying an alist with copy-list, only the conses, whose cdr is a list will be copied anew (depending upon the circumstances this may be a desired result).

racket/scheme Checking for struture equality

Ok I need some help with thinking through this conceputally.
I need to check if a list and another list is structurally equal.
For example:
(a (bc) de)) is the same as (f (gh) ij)), because they have the same structure.
Now cleary the base case will be if both list are empty they are structurally equal.
The recursive case on the other hand I'm not sure where to start.
Some ideas:
Well we are not going to care if the elements are == to each other because that doesn't matter. We just care in the structure. I do know we will car down the list and recursively call the function with the cdr of the list.
The part that confuses me is how do you determine wheter an atom or sublist has the same structure?
Any help will be appreciated.
You're getting there. In the (free, online, excellent) textbook, this falls into section 17.3, "Processing two lists simultaneously: Case 3". I suggest you take a look.
http://www.htdp.org/2003-09-26/Book/curriculum-Z-H-1.html#node_toc_node_sec_17.3
One caveat: it looks like the data definition you're working with is "s-expression", which you can state like this:
;; an s-expression is either
;; - the empty list, or
;; - (cons symbol s-expression), or
;; - (cons s-expression s-expression)
Since this data definition has three cases, there are nine possibilities when considering two of them.
John Clements
(Yes, you could reduce the number of cases by embedding the data in the more general one that includes improper lists. Doesn't sound like a good idea to me.)

Apply-recur macro in Clojure

I'm not very familiar with Clojure/Lisp macros. I would like to write apply-recur macro which would have same meaning as (apply recur ...)
I guess there is no real need for such macro but I think it's a good exercise. So I'm asking for your solution.
Well, there really is no need for that, if only because recur cannot take varargs (a recur to the top of the function takes a single final seqable argument grouping all arguments pass the last required argument). This doesn't affect the validity of the exercise, of course.
However, there is a problem in that a "proper" apply-recur should presumably handle argument seqs returned by arbitrary expressions and not only literals:
;; this should work...
(apply-recur [1 2 3])
;; ...and this should have the same effect...
(apply-recur (vector 1 2 3))
;; ...as should this, if (foo) returns [1 2 3]
(apply-recur (foo))
However, the value of an arbitrary expression such as (foo) is simply not available, in general, at macro expansion time. (Perhaps (vector 1 2 3) might be assumed to always yield the same value, but foo might mean different things at different times (one reason eval wouldn't work), be a let-bound local rather than a Var (another reason eval wouldn't work) etc.)
Thus to write a fully general apply-recur, we would need to be able to determine how many arguments a regular recur form would expect and have (apply-recur some-expression) expand to something like
(let [seval# some-expression]
(recur (nth seval# 0)
(nth seval# 1)
...
(nth seval# n-1))) ; n-1 being the number of the final parameter
(The final nth might need to be nthnext if we're dealing with varargs, which presents a problem similar to what is described in the next paragraph. Also, it would be a good idea to add an assertion to check the length of the seqable returned by some-expression.)
I am not aware of any method to determine the proper arity of a recur at a particular spot in the code at macro-expansion time. That does not mean one isn't available -- that's something the compiler needs to know anyway, so perhaps there is a way to extract that information from its internals. Even so, any method for doing that would almost certainly need to rely on implementation details which might change in the future.
Thus the conclusion is this: even if it is at all possible to write such a macro (which might not even be the case), it is likely that any implementation would be very fragile.
As a final remark, writing an apply-recur which would only be capable of dealing with literals (actually the general structure of the arg seq would need to be given as a literal; the arguments themselves -- not necessarily, so this could work: (apply-recur [foo bar baz]) => (recur foo bar baz)) would be fairly simple. I'm not spoiling the exercise by giving away the solution, but, as a hint, consider using ~#.
apply is a function that takes another function as an argument. recur is a special form, not a function, so it cannot be passed to apply.