How to merge two or more columns into one? - scala

I have a streaming Dataframe that I want to calculate min and avg over some columns.
Instead of getting separate resulting columns of min and avg after applying the operations, I want to merge the min and average output into a single column.
The dataframe look like this:
+-----+-----+
| 1 | 2 |
+-----+-----+-
|24 | 55 |
+-----+-----+
|20 | 51 |
+-----+-----+
I thought I'd use a Scala tuple for it, but that does not seem to work:
val res = List("1","2").map(name => (min(col(name)), avg(col(name))).as(s"result($name)"))
All code used:
val res = List("1","2").map(name => (min(col(name)),avg(col(name))).as(s"result($name)"))
val groupedByTimeWindowDF1 = processedDf.groupBy($"xyz", window($"timestamp", "60 seconds"))
.agg(res.head, res.tail: _*)
I'm expecting the output after applying the min and avg mathematical opearations to be:
+-----------+-----------+
| result(1)| result(2)|
+-----------+-----------+
|20 ,22 | 51,53 |
+-----------+-----------+
How I should write the expression?

Use struct standard function:
struct(colName: String, colNames: String*): Column
struct(cols: Column*): Column
Creates a new struct column that composes multiple input columns.
That gives you the values as well as the names (of the columns).
val res = List("1","2").map(name =>
struct(min(col(name)), avg(col(name))) as s"result($name)")
^^^^^^ HERE
The power of struct can be seen when you want to reference one field in the struct and you can use the name (not index).
q.select("structCol.name")

What you want to do is to merge the values of multiple columns together in a single column. For this you can use the array function. In this case it would be:
val res = List("1","2").map(name => array(min(col(name)),avg(col(name))).as(s"result($name)"))
Which will give you :
+------------+------------+
| result(1)| result(2)|
+------------+------------+
|[20.0, 22.0]|[51.0, 53.0]|
+------------+------------+

Related

I need to create a new dataframe as below in pysaprk from given input dataset

persons who has same salary should come in same record and their names should be separated by ",".
input Dataset :
Expected Dataset
You can achieve this as below -
Apply a groupBy on Salary and use - collect_list to club all the Name inside an ArrayType()
Further you can choose to convert it to a StringType using - concat_ws
Data Preparation
df = pd.read_csv(StringIO("""Name,Salary
abc,100000
bcd,20000
def,100000
pqr,20000
xyz,30000
""")
,delimiter=','
).applymap(lambda x: str(x).strip())
sparkDF = sql.createDataFrame(df)
sparkDF.groupby("Salary").agg(F.collect_list(F.col("Name")).alias('Name')).show(truncate=False)
+------+----------+
|Salary|Name |
+------+----------+
|100000|[abc, def]|
|20000 |[bcd, pqr]|
|30000 |[xyz] |
+------+----------+
Concat WS
sparkDF.groupby("Salary").agg(F.concat_ws(",",F.collect_list(F.col("Name"))).alias('Name')).show(truncate=False)
+------+-------+
|Salary|Name |
+------+-------+
|100000|abc,def|
|20000 |bcd,pqr|
|30000 |xyz |
+------+-------+

add new column in a dataframe depending on another dataframe's row values

I need to add a new column to dataframe DF1 but the new column's value should be calculated using other columns' value present in that DF. Which of the other columns to be used will be given in another dataframe DF2.
eg. DF1
|protocolNo|serialNum|testMethod |testProperty|
+----------+---------+------------+------------+
|Product1 | AB |testMethod1 | TP1 |
|Product2 | CD |testMethod2 | TP2 |
DF2-
|action| type| value | exploded |
+------------+---------------------------+-----------------+
|append|hash | [protocolNo] | protocolNo |
|append|text | _ | _ |
|append|hash | [serialNum,testProperty] | serialNum |
|append|hash | [serialNum,testProperty] | testProperty |
Now the value of exploded column in DF2 will be column names of DF1 if value of type column is hash.
Required -
New column should be created in DF1. the value should be calculated like below-
hash[protocolNo]_hash[serialNumTestProperty] ~~~ here on place of column their corresponding row values should come.
eg. for Row1 of DF1, col value should be
hash[Product1]_hash[ABTP1]
this will result into something like this abc-df_egh-45e after hashing.
The above procedure should be followed for each and every row of DF1.
I've tried using map and withColumn function using UDF on DF1. But in UDF, outer dataframe value is not accessible(gives Null Pointer Exception], also I'm not able to give DataFrame as input to UDF.
Input DFs would be DF1 and DF2 as mentioned above.
Desired Output DF-
|protocolNo|serialNum|testMethod |testProperty| newColumn |
+----------+---------+------------+------------+----------------+
|Product1 | AB |testMethod1 | TP1 | abc-df_egh-4je |
|Product2 | CD |testMethod2 | TP2 | dfg-df_ijk-r56 |
newColumn value is after hashing
Instead of DF2, you can translate DF2 to case class like Specifications, e.g
case class Spec(columnName:String,inputColumns:Seq[String],action:String,action:String,type:String*){}
Create instances of above class
val specifications = Seq(
Spec("new_col_name",Seq("serialNum","testProperty"),"hash","append")
)
Then you can process the below columns
val transformed = specifications
.foldLeft(dtFrm)((df: DataFrame, spec: Specification) => df.transform(transformColumn(columnSpec)))
def transformColumn(spec: Spec)(df: DataFrame): DataFrame = {
spec.type.foldLeft(df)((df: DataFrame, type : String) => {
type match {
case "append" => {have a case match of the action and do that , then append with df.withColumn}
}
}
Syntax may not be correct
Since DF2 has the column names that will be used to calculate a new column from DF1, I have made this assumption that DF2 will not be a huge Dataframe.
First step would be to filter DF2 and get the column names that we want to pick from DF1.
val hashColumns = DF2.filter('type==="hash").select('exploded).collect
Now, hashcolumns will have the columns that we want to use to calculate hash in the newColumn. The hashcolumns is an Array of Row. We need this to be a Column that will be applied while creating the newColumn in DF1.
val newColumnHash = hashColumns.map(f=>hash(col(f.getString(0)))).reduce(concat_ws("_",_,_))
The above line will convert the Row to a Column with hash function applied to it. And we reduce it while concatenating _. Now, the task becomes simple. We just need to apply this to DF1.
DF1.withColumn("newColumn",newColumnHash).show(false)
Hope this helps!

Is there a better way to go about this process of trimming my spark DataFrame appropriately?

In the following example, I want to be able to only take the x Ids with the highest counts. x is number of these I want which is determined by a variable called howMany.
For the following example, given this Dataframe:
+------+--+-----+
|query |Id|count|
+------+--+-----+
|query1|11|2 |
|query1|12|1 |
|query2|13|2 |
|query2|14|1 |
|query3|13|2 |
|query4|12|1 |
|query4|11|1 |
|query5|12|1 |
|query5|11|2 |
|query5|14|1 |
|query5|13|3 |
|query6|15|2 |
|query6|16|1 |
|query7|17|1 |
|query8|18|2 |
|query8|13|3 |
|query8|12|1 |
+------+--+-----+
I would like to get the following dataframe if the variable number is 2.
+------+-------+-----+
|query |Ids |count|
+------+-------+-----+
|query1|[11,12]|2 |
|query2|[13,14]|2 |
|query3|[13] |2 |
|query4|[12,11]|1 |
|query5|[11,13]|2 |
|query6|[15,16]|2 |
|query7|[17] |1 |
|query8|[18,13]|2 |
+------+-------+-----+
I then want to remove the count column, but that is trivial.
I have a way to do this, but I think it defeats the purpose of scala all together and completely wastes a lot of runtime. Being new, I am unsure about the best ways to go about this
My current method is to first get a distinct list of the query column and create an iterator. Second I loop through the list using the iterator and trim the dataframe to only the current query in the list using df.select($"eachColumnName"...).where("query".equalTo(iter.next())). I then .limit(howMany) and then groupBy($"query").agg(collect_list($"Id").as("Ids")). Lastly, I have an empty dataframe and add each of these one by one to the empty dataframe and return this newly created dataframe.
df.select($"query").distinct().rdd.map(r => r(0).asInstanceOf[String]).collect().toList
val iter = queries.toIterator
while (iter.hasNext) {
middleDF = df.select($"query", $"Id", $"count").where($"query".equalTo(iter.next()))
queryDF = middleDF.sort(col("count").desc).limit(howMany).select(col("query"), col("Ids")).groupBy(col("query")).agg(collect_list("Id").as("Ids"))
emptyDF.union(queryDF) // Assuming emptyDF is made
}
emptyDF
I would do this using Window-Functions to get the rank, then groupBy to aggrgate:
import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions._
val howMany = 2
val newDF = df
.withColumn("rank",row_number().over(Window.partitionBy($"query").orderBy($"count".desc)))
.where($"rank"<=howMany)
.groupBy($"query")
.agg(
collect_list($"Id").as("Ids"),
max($"count").as("count")
)

PySpark join dataframes and merge contents of specific columns

My goal is to merge two dataframes on the column id, and perform a somewhat complex merge on another column that contains JSON we can call data.
Suppose I have the DataFrame df1 that looks like this:
id | data
---------------------------------
42 | {'a_list':['foo'],'count':1}
43 | {'a_list':['scrog'],'count':0}
And I'm interested in merging with a similar, but different DataFrame df2:
id | data
---------------------------------
42 | {'a_list':['bar'],'count':2}
44 | {'a_list':['baz'],'count':4}
And I would like the following DataFrame, joining and merging properties from the JSON data where id matches, but retaining rows where id does not match and keeping the data column as-is:
id | data
---------------------------------------
42 | {'a_list':['foo','bar'],'count':3} <-- where 'bar' is added to 'foo', and count is summed
43 | {'a_list':['scrog'],'count':1}
44 | {'a_list':['baz'],'count':4}
As can be seen where id is 42, there is a some logic I will have to apply to how the JSON is merged.
My knee jerk thought is that I'd like to provide a lambda / udf to merge the data column, but not sure how to think about that with during a join.
Alternatively, I could break the properties from the JSON into columns, something like this, that might be a better approach?
df1:
id | a_list | count
----------------------
42 | ['foo'] | 1
43 | ['scrog'] | 0
df2:
id | a_list | count
---------------------
42 | ['bar'] | 2
44 | ['baz'] | 4
Resulting:
id | a_list | count
---------------------------
42 | ['foo', 'bar'] | 3
43 | ['scrog'] | 0
44 | ['baz'] | 4
If I went this route, I would then have to merge the columns a_list and count into JSON again under a single column data, but this I can wrap my head around as a relatively simple map function.
Update: Expanding on Question
More realistically, I will have n number of DataFrames in a list, e.g. df_list = [df1, df2, df3], all shaped the same. What is an efficient way to perform these same actions on n number of DataFrames?
Update to Update
Not sure how efficient this is, or if there is a more spark-esque way to do this, but incorporating accepted answer, this appears to work for question update:
for i in range(0, (len(validations) - 1)):
# set dfs
df1 = validations[i]['df']
df2 = validations[(i+1)]['df']
# joins here...
# update new_df
new_df = df2
Here's one way to accomplish your second approach:
Explode the list column and then unionAll the two DataFrames. Next groupBy the "id" column and use pyspark.sql.functions.collect_list() and pyspark.sql.functions.sum():
import pyspark.sql.functions as f
new_df = df1.select("id", f.explode("a_list").alias("a_values"), "count")\
.unionAll(df2.select("id", f.explode("a_list").alias("a_values"), "count"))\
.groupBy("id")\
.agg(f.collect_list("a_values").alias("a_list"), f.sum("count").alias("count"))
new_df.show(truncate=False)
#+---+----------+-----+
#|id |a_list |count|
#+---+----------+-----+
#|43 |[scrog] |0 |
#|44 |[baz] |4 |
#|42 |[foo, bar]|3 |
#+---+----------+-----+
Finally you can use pyspark.sql.functions.struct() and pyspark.sql.functions.to_json() to convert this intermediate DataFrame into your desired structure:
new_df = new_df.select("id", f.to_json(f.struct("a_list", "count")).alias("data"))
new_df.show()
#+---+----------------------------------+
#|id |data |
#+---+----------------------------------+
#|43 |{"a_list":["scrog"],"count":0} |
#|44 |{"a_list":["baz"],"count":4} |
#|42 |{"a_list":["foo","bar"],"count":3}|
#+---+----------------------------------+
Update
If you had a list of dataframes in df_list, you could do the following:
from functools import reduce # for python3
df_list = [df1, df2]
new_df = reduce(lambda a, b: a.unionAll(b), df_list)\
.select("id", f.explode("a_list").alias("a_values"), "count")\
.groupBy("id")\
.agg(f.collect_list("a_values").alias("a_list"), f.sum("count").alias("count"))\
.select("id", f.to_json(f.struct("a_list", "count")).alias("data"))

How to fetch the value and type of each column of each row in a dataframe?

How can I convert a dataframe to a tuple that includes the datatype for each column?
I have a number of dataframes with varying sizes and types. I need to be able to determine the type and value of each column and row of a given dataframe so I can perform some actions that are type-dependent.
So for example say I have a dataframe that looks like:
+-------+-------+
| foo | bar |
+-------+-------+
| 12345 | fnord |
| 42 | baz |
+-------+-------+
I need to get
Seq(
(("12345", "Integer"), ("fnord", "String")),
(("42", "Integer"), ("baz", "String"))
)
or something similarly simple to iterate over and work with programmatically.
Thanks in advance and sorry for what is, I'm sure, a very noobish question.
If I understand your question correct, then following shall be your solution.
val df = Seq(
(12345, "fnord"),
(42, "baz"))
.toDF("foo", "bar")
This creates dataframe which you already have.
+-----+-----+
| foo| bar|
+-----+-----+
|12345|fnord|
| 42| baz|
+-----+-----+
Next step is to extract dataType from the schema of the dataFrame and create a iterator.
val fieldTypesList = df.schema.map(struct => struct.dataType)
Next step is to convert the dataframe rows into rdd list and map each value to dataType from the list created above
val dfList = df.rdd.map(row => row.toString().replace("[","").replace("]","").split(",").toList)
val tuples = dfList.map(list => list.map(value => (value, fieldTypesList(list.indexOf(value)))))
Now if we print it
tuples.foreach(println)
It would give
List((12345,IntegerType), (fnord,StringType))
List((42,IntegerType), (baz,StringType))
Which you can iterate over and work with programmatically