I have an actor with stash usage. Sometimes, when it crashes, it loses all stashed messages. I found that it depends on what supervision logic I use.
I wrote a simple example.
An actor with the stash:
case object WrongMessage
case object TestMessage
case object InitialMessage
class TestActor extends Actor with Stash {
override def receive: Receive = uninitializedReceive
def uninitializedReceive: Receive = {
case TestMessage =>
println(s"stash test message")
stash()
case WrongMessage =>
println(s"wrong message")
throw new Throwable("wrong message")
case InitialMessage =>
println(s"initial message")
context.become(initializedReceive)
unstashAll()
}
def initializedReceive: Receive = {
case TestMessage =>
println(s"test message")
}
}
In the following code, TestActor never receives stashed TestMessage:
object Test1 extends App {
implicit val system: ActorSystem = ActorSystem()
val actorRef = system.actorOf(BackoffSupervisor.props(Backoff.onFailure(
Props[TestActor], "TestActor", 1 seconds, 1 seconds, 0
).withSupervisorStrategy(OneForOneStrategy()({
case _ => SupervisorStrategy.Restart
}))))
actorRef ! TestMessage
Thread.sleep(5000L)
actorRef ! WrongMessage
Thread.sleep(5000L)
actorRef ! InitialMessage
}
But this code works well:
class SupervisionActor extends Actor {
val testActorRef: ActorRef = context.actorOf(Props[TestActor])
override def supervisorStrategy: SupervisorStrategy = OneForOneStrategy()({
case _ => SupervisorStrategy.Restart
})
override def receive: Receive = {
case message => testActorRef forward message
}
}
object Test2 extends App {
implicit val system: ActorSystem = ActorSystem()
val actorRef = system.actorOf(Props(classOf[SupervisionActor]))
actorRef ! TestMessage
Thread.sleep(5000L)
actorRef ! WrongMessage
Thread.sleep(5000L)
actorRef ! InitialMessage
}
I looked into sources and found that actor supervision uses
LocalActorRef.restart method which backed by system dispatcher logic, but BackoffSupervisor simply creates a new actor after termination of the old one. Is there any way to work around it?
I'm not sure one can make restart under BackoffSupervisor properly send stashed messages without some custom re-implementation effort.
As you've already pointed out that BackoffSupervisor does its own restart that bypasses the standard actor lifecycle. In fact, it's explicitly noted in the BackoffOnRestartSupervisor source code:
Whatever the final Directive is, we will translate all Restarts to our
own Restarts, which involves stopping the child.
In case you haven't read about this reported issue, it has a relevant discussion re: problem with Backoff.onFailure.
Backoff.onStop would also give the wanted BackoffSupervisor feature, but unfortunately it has its own use cases and won't be triggered by an exception.
Related
I am trying to create a web socket server using Play Framework where response from server should be synchronous or asynchronous based on request.
The request will be processed in Parent actor .Based on the action in the request, child actor will be created and message will be passed to child actor for processing and response will be sent back to the controller.
There are predefined actions and sample request for some actions are as follows,
[,,]
["1234","Boot","{"system":"ABCD"}"]
["5678","Start","{"system":"EFGH", "currenTime":"1559548762638"}"]
#Singleton
class RequestController #Inject()(cc: ControllerComponents)(implicit system: ActorSystem, mat: Materializer) extends AbstractController(cc) {
def ws = WebSocket.accept[String, String] {req =>
ActorFlow.actorRef { out =>
ParentActor.props(out)
}
}
}
object ParentActor {
def props(out: ActorRef) = Props(new ParentActor(out))
}
class ParentActor(out : ActorRef) extends Actor {
override def receive: Receive = {
case msg: String =>
//String split opeartion to find the action.
//create child actor for the action and pass the message to the child actor
val action = msg.split(",")[2]
if("Boot".equals(action)){
val bootActor: ActorRef = actorSystem.actorOf(Props[BootActor])
childActor ! msg
}else if("Start".equals(action)){
val startActor: ActorRef = actorSystem.actorOf(Props[StartActor])
startActor ! msg
}
case msg: Response => out ! msg
}
}
case class Response(name:String, msg:String)
class BootActor extends Actor{
override def receive: Receive = {
case msg : String =>
sender() ! Response("ABC",msg)
}
}
class StartActor extends Actor{
override def receive: Receive = {
case msg : String =>
sender() ! Response("Efgh",msg)
}
}
Right now i am getting the action from the request and create a child actor for the action and pass the message to the child actor for processing.
But i am not sure is there any better way or design pattern to process the request and create a child actor instead of String operation?
First of all, there appears to be a typo in your code:
if ("Boot".equals(action)) {
val bootActor: ActorRef = actorSystem.actorOf(Props[BootActor])
childActor ! msg
} else if ("Start".equals(action)) {
val startActor: ActorRef = actorSystem.actorOf(Props[StartActor])
startActor ! msg
}
The message in the first conditional clause should be sent to bootActor instead of childActor, which is undefined in your code snippet.
Another issue is that you're using actorSystem.actorOf to create the child actors. This method creates "top-level" actors, which should be kept to a minimum. Actors created with actorSystem.actorOf are under the supervision of the guardian actor. What this means in relation to your code is that when ParentActor is stopped (i.e., when a WebSocket is closed, Play stops the actor used in ActorFlow, as documented here), the multiple instances of BootActor and StartActor will not be stopped, leaving you with a bunch of idle top-level actors. The remedy is to use context.actorOf to create instances of BootActor and StartActor: doing so makes these instances children of ParentActor.
Also, you should use the == operator instead of the equals method.
Here are the aforementioned changes:
if ("Boot" == action) {
val bootActor: ActorRef = context.actorOf(Props[BootActor])
bootActor ! msg
} else if ("Start" == action) {
val startActor: ActorRef = context.actorOf(Props[StartActor])
startActor ! msg
}
The above could be slightly simplified to the following:
val childActor =
if (action == "Boot") context.actorOf(Props[BootActor])
else context.actorOf(Props[StartActor])
childActor ! msg
To further simplify your code, don't create child actors, which in this case aren't necessary. Move all the logic of interacting with the out actor into a single actor.
I'm currently working on an application with a signup process. This signup process will, at some point, communicate with external systems in an asynchronous manner. To keep this question concise, I'm showing you two important actors I've written:
SignupActor.scala
class SignupActor extends PersistentFSM[SignupActor.State, Data, DomainEvt] {
private val apiActor = context.actorOf(ExternalAPIActor.props(new HttpClient))
// At a certain point, a CreateUser(data) message is sent to the apiActor
}
ExternalAPIActor.scala
class ExternalAPIActor(apiClient: HttpClient) extends Actor {
override def preRestart(reason: Throwable, message: Option[Any]) = {
message.foreach(context.system.scheduler.scheduleOnce(3 seconds, self, _))
super.preRestart(reason, message)
}
def receive: Receive = {
case CreateUser(data) =>
Await.result(
apiClient.post(data)
.map(_ => UserCreatedInAPI())
.pipeTo(context.parent),
Timeout(5 seconds).duration
)
}
}
This setup seems to work as expected. When there is an issue with the external API (such as a timeout or network problems), the Future returned by HttpClient::post fails and will result in an exception thanks to Await.result. This, in turn thanks to the SupervisorStrategy of the SignupActor parent actor, will restart the ExternalAPIActor where we can re-send the last message to itself with a small delay to avoid deadlock.
I see a couple of issues with this setup:
Within the receive method of ExternalAPIActor, blocking occurs. As far as I understand, blocking within Actors is considered an anti-pattern.
The delay used to re-send the message is static. If the API is unavailable for longer periods of time, we will keep on sending HTTP requests every 3 seconds. I'd like some kind of exponential backoff mechanism here instead.
To continue on with the latter, I've tried the following in the SignupActor:
SignupActor.scala
val supervisor = BackoffSupervisor.props(
Backoff.onFailure(
ExternalAPIActor.props(new HttpClient),
childName = "external-api",
minBackoff = 3 seconds,
maxBackoff = 30 seconds,
randomFactor = 0.2
)
)
private val apiActor = context.actorOf(supervisor)
Unfortunately, this doesn't seem to do anything at all -- the preRestart method of ExternalAPIActor isn't called at all. When replacing Backoff.onFailure with Backoff.onStop, the preRestart method is called, but without any kind of exponential backoff at all.
Given the above, my questions are as follows:
Is using Await.result the recommended (the only?) way to make sure exceptions thrown in a Future returned from services called within actors are caught and handled accordingly? An especially important part of my particular use case is the fact that messages shouldn't be dropped but retried when something went wrong. Or is there some other (idiomatic) way that exceptions thrown in asynchronous contexts should be handled within Actors?
How would one use the BackoffSupervisor as intended in this case? Again: it is very important that the message responsible for the exception is not dropped, but retried until a N-number of times (to be determined by the maxRetries argument of SupervisorStrategy.
Is using Await.result the recommended (the only?) way to make sure
exceptions thrown in a Future returned from services called within
actors are caught and handled accordingly?
No. Generally that's not how you want to handle failures in Akka. A better alternative is to pipe the failure to your own actor, avoiding the need to use Await.result at all:
def receive: Receive = {
case CreateUser(data) =>
apiClient.post(data)
.map(_ => UserCreatedInAPI())
.pipeTo(self)
case Success(res) => context.parent ! res
case Failure(e) => // Invoke retry here
}
This would mean no restart is required to handle failure, they are all part of the normal flow of your actor.
An additional way to handle this can be to create a "supervised future". Taken from this blog post:
object SupervisedPipe {
case class SupervisedFailure(ex: Throwable)
class SupervisedPipeableFuture[T](future: Future[T])(implicit executionContext: ExecutionContext) {
// implicit failure recipient goes to self when used inside an actor
def supervisedPipeTo(successRecipient: ActorRef)(implicit failureRecipient: ActorRef): Unit =
future.andThen {
case Success(result) => successRecipient ! result
case Failure(ex) => failureRecipient ! SupervisedFailure(ex)
}
}
implicit def supervisedPipeTo[T](future: Future[T])(implicit executionContext: ExecutionContext): SupervisedPipeableFuture[T] =
new SupervisedPipeableFuture[T](future)
/* `orElse` with the actor receive logic */
val handleSupervisedFailure: Receive = {
// just throw the exception and make the actor logic handle it
case SupervisedFailure(ex) => throw ex
}
def supervised(receive: Receive): Receive =
handleSupervisedFailure orElse receive
}
This way, you only pipe to self once you get a Failure, and otherwise send it to the actor the message was meant to be sent to, avoiding the need for the case Success I added to the receive method. All you need to do is replace supervisedPipeTo with the original framework provided pipeTo.
Alright, I've done some more thinking and tinkering and I've come up with the following.
ExternalAPIActor.scala
class ExternalAPIActor(apiClient: HttpClient) extends Actor with Stash {
import ExternalAPIActor._
def receive: Receive = {
case msg # CreateUser(data) =>
context.become(waitingForExternalServiceReceive(msg))
apiClient.post(data)
.map(_ => UserCreatedInAPI())
.pipeTo(self)
}
def waitingForExternalServiceReceive(event: InputEvent): Receive = LoggingReceive {
case Failure(_) =>
unstashAll()
context.unbecome()
context.system.scheduler.scheduleOnce(3 seconds, self, event)
case msg:OutputEvent =>
unstashAll()
context.unbecome()
context.parent ! msg
case _ => stash()
}
}
object ExternalAPIActor {
sealed trait InputEvent
sealed trait OutputEvent
final case class CreateUser(data: Map[String,Any]) extends InputEvent
final case class UserCreatedInAPI() extends OutputEvent
}
I've used this technique to prevent the original message from being lost in case there is something wrong with the external service we're calling. During the process of a request to an external service, I switch context, waiting for either a response of a failure and switch back afterwards. Thanks to the Stash trait, I can make sure other requests to external services aren't lost as well.
Since I have multiple actors in my application calling external services, I abstracted the waitingForExternalServiceReceive to its own trait:
WaitingForExternalService.scala
trait WaitingForExternalServiceReceive[-tInput, +tOutput] extends Stash {
def waitingForExternalServiceReceive(event: tInput)(implicit ec: ExecutionContext): Receive = LoggingReceive {
case akka.actor.Status.Failure(_) =>
unstashAll()
context.unbecome()
context.system.scheduler.scheduleOnce(3 seconds, self, event)
case msg:tOutput =>
unstashAll()
context.unbecome()
context.parent ! msg
case _ => stash()
}
}
Now, the ExternalAPIActor can extend this trait:
ExternalAPIActor.scala
class ExternalAPIActor(apiClient: HttpClient) extends Actor with WaitingForExternalServiceReceive[InputEvent,OutputEvent] {
import ExternalAPIActor._
def receive: Receive = {
case msg # CreateUser(data) =>
context.become(waitingForExternalServiceReceive(msg))
apiClient.post(data)
.map(_ => UserCreatedInAPI())
.pipeTo(self)
}
}
object ExternalAPIActor {
sealed trait InputEvent
sealed trait OutputEvent
final case class CreateUser(data: Map[String,Any]) extends InputEvent
final case class UserCreatedInAPI() extends OutputEvent
}
Now, the actor won't get restarted in case of failures/errors and the message isn't lost. What's more, the entire flow of the actor now is non-blocking.
This setup is (most probably) far from perfect, but it seems to work exactly as I need it to.
I'm learning how to use context.become to control the state of my actor, i'm using this code:
class MyActor extends Actor {
override def receive: Receive = {
println("Happens here")
active(Set.empty)
}
def active(isInSet: Set[String]): Receive = {
case Add(key) =>
context.become(active(isInSet+key))
case Contains(key) =>
sender() ! isInSet(key)
case ShowAll =>
println(isInSet.toSeq)
}
}
case class Add(key: String)
case class Contains(key: String)
object ShowAll
object DemoBecome extends App{
override def main(args: Array[String]): Unit = {
val system = ActorSystem("BecomeUnbecome")
val act = system.actorOf(Props(classOf[MyActor]), "demoActor")
act ! Add("1")
act ! ShowAll
act ! Add("2")
act ! ShowAll
Thread.sleep(10000)
System.exit(0)
}
When i send the first message, the "receive" works and prints the message, after the second message doesn't show, this is my output:
Happens here
Set()
Vector(1)
Set(1)
Vector(1, 2)
If i change the receive method, for this:
def receive = {
case a: Add => println("happens here Add" )
case c: Contains => println("happens here Contains")
case ShowAll => println("happens here Show")
}
I receive this output:
happens here Add
happens here Show
happens here Add
happens here Show
So i tried, to track the moment when "receive" is "blocked", but i didn't have success, my doubt is: When i uses context.become in my actor, how and when Akka handle the messages after the first one?
When you use context.become you are changing the behavior in your actor. That means, when the actor starts it using the default receive behavior. However, when it receives a message it prints the message Happens here and uses the partial function active to handle it.
Since, inside active you call context.become(active(_)) the behavior of the actor changes. From now on, when a messages gets sent to the actor it will execute the partial function active instead of the receive method and that's why you are not seeing Happens here more than once in your output.
In my Spray app, I delegate requests to actors. I want to be able to kill a actor that takes too long. I'm not sure whether I should be using Spray timeouts, Akka ask pattern or something else.
I have implemented:
def processRouteRequest(system: ActorSystem) = {
respondWithMediaType(`text/json`) {
params { p => ctx =>
val builder = newBuilderActor
builder ! Request(p) // the builder calls `ctx.complete`
builder ! PoisonPill
system.scheduler.scheduleOnce(routeRequestMaxLife, builder, Kill)
}
}
}
The idea being that the actor lives only for the duration of a single request and if it doesn't complete within routeRequestMaxLife it gets forcibly killed. This approach seems over-the-top (and spews a lot of info about undelivered messages). I'm not even certain it works correctly.
It seems like what I'm trying to achieve should be a common use-case. How should I approach it?
I would tend to using the ask pattern and handling the requests as follows:
class RequestHandler extends Actor {
def receive = {
case "quick" =>
sender() ! "Quick Reply"
self ! PoisonPill
case "slow" =>
val replyTo = sender()
context.system.scheduler.scheduleOnce(5 seconds, self, replyTo)
case a:ActorRef =>
a ! "Slow Reply"
self ! PoisonPill
}
}
class ExampleService extends HttpService with Actor {
implicit def actorRefFactory = context
import context.dispatcher
def handleRequest(mode: String):Future[String] = {
implicit val timeout = Timeout(1 second)
val requestHandler = context.actorOf(Props[RequestHandler])
(requestHandler ? mode).mapTo[String]
}
val route: Route =
path("endpoint" / Segment) { str =>
get {
onComplete(handleRequest(str)) {
case Success(str) => complete(str)
case Failure(ex) => complete(ex)
}
}
}
def receive = runRoute(route)
}
This way the actor takes care of stopping itself, and the semantics of Ask give you the information about whether or not the request timed out.
The context.parent reference does not do it, for me. In a Play project, I launch a new actor to deal with each incoming request:
val myActor: ActorRef = system.actorOf(Props(classOf[MyActor])
val future: Future[String] = (myActor ? Hello)(5.seconds).mapTo[String]
future.map(result => Ok(result)).recover {
case ex: AskTimeoutException => Ok("timeout expired")
case _ => Ok("error")
}
This triggers more actor messaging in the receive method of myActor: when anotherActor responds to myActor, the latter sends a message AllGood to its parent.
class MyActor extends Actor {
// other stuff, among which setup of anotherActor
def receive: Actor.Receive = {
case Hallo => anotherActor ! Hello
case HelloBack => context.parent ! AllGood
}
}
class AnotherActor extends Actor {
def receive: Actor.Receive = {
case Hallo => sender ! HelloBack
}
}
Everything works fine until myActor tries to send a message to context.parent. I get a deadLetters message in the console.
from Actor[xyz] to Actor[akka://my-system/user] was not delivered. [1] dead letters encountered.
I can make it work if myActor keeps a reference to the original sender, and the code looks like this instead:
class MyActor extends Actor {
var myDad: Option[ActorRef] = None // <--- NEW REFERENCE
// other stuff, among which setup of anotherActor
def receive: Actor.Receive = {
case Hallo => {
myDad = Some(sender)
anotherActor ! Hello
}
case HelloBack => myDad ! AllGood <-- MYDAD INSTEAD OF CONTEXT.PARENT
}
}
class AnotherActor extends Actor {
def receive: Actor.Receive = {
case Hallo => sender ! HelloBack
}
}
The reference myDad is actually something like Actor[akka://my-system/temp/$a], while I would expect it to be the same as the context.parent which was Actor[akka://my-system/user]. Isn't it the same actor?
Can anybody explain this behaviour to me, and suggest a cleaner way to fix this? Thanks.
Looks like you mixed up the concepts of parent and sender.
context.parent [akka://my-system/user] is normal because the actor has been created as a child of the Akka system using system.actorOf(Props(classOf[MyActor]).
the sender method gives you back the actor who sent the message. The important thing here is; this is not the actor system who sent the message to your actor. When using the ask pattern Akka creates a temporary actor (in your case Actor[akka://my-system/temp/$a]) that will send the message and wait for the answer. When the response is received, the Future is completed.
If you want it is possible to forward the original sender so that your AnotherActor can reply directly HelloBack to the temporary actor created by the ask pattern.
To do so just change the way the message is passed to anotherActor.
def receive: Actor.Receive = {
case Hallo => anotherActor.tell(Hello, sender)
}