FOR iterator block in Simulink and model's input - matlab

Hello I'm building a exe from a simulink model and in order to do that I pass the inputs to it through a .mat file.
My question is, since in my model is present a "for each" block, how can I store the data in the .mat file? Normally (without the for each block) I would store the input as a constant vector in the workspace (see the upper part of the simulink model) and it will handle automatically how to pass the data during the simulation time. But in my case, since I want to export as .exe and pass the input programmatically, I need the input as .mat file and the presence of the "for each" block screw up the building the vector time (since is unclear how to combine time vector with data vector inside the .mat file because is unclear to simulink which data take at a given simulation time.
Thank you for any help!

It's not really clear what the specific problem you are having is.
In your upper diagram, the model will run when you have a variable
>> input = 1:3;
If you turn on Display->Signals & Ports->Signal Dimensions then you'll see that the signal coming out of the Constant block has a dimension of 3.
For the lower diagram, create a variable in MATLAB, that since it will be used in a From File block, must adhere to the specifications required for that block, which means the first row is a time vector, so
>> t = [0 10]
t =
0 10
>> u = [1 1;2 2;3 3]
u =
1 1
2 2
3 3
>> tu = [t;u]
tu =
0 10
1 1
2 2
3 3
And then save this variable to your file,
>> save input tu
Now the signal coming out of the From File block will also be of dimension 3.
Change the values of t and u to suit your specific problem.

Related

Assign vectors from MATLAB workspace (struct) to Simulink Model

I need help with running a Simulink model with the data from MATLAB workspace contained in structures. Below is a very simplified use-case of what I would like to do
Use Case :
I have a structure in MATLAB workspace called "data_in", and it has two fields x, and y which are vectors. I have a simulink model with two Inports named x and y.
This is what I would like to to :
a. Read the name of the Inports from the Simlunk Model. In this case it would be x and y
b. Programmatically assign the data from the structure - "data_in" to the ports "x" and "y" in the Simulink model. The structure "data_in" contains two vectors "x" and "y" to be mapped to Simulink Inports
The above use case is a very simplified scenario. The model that I intend to use can have 100 inports, and thus I do not want to use "From Workspace" block, as it would be impractical for me to add 100s of them
How can I handle such a situation in Simulink. I am a little more than a beginner in MATLAB and Simulink. So, a detailed answer would help me a lot
If I get correctly your question, and the inputs are time-variables, you may use From Workspace and call your initialization script by InitFcn in Callbacks.
assuming you have an initialization script named init_script:
put in InitFcn this: init_script; so as you run Simulink that script is run first.
assume this is your timeseries in init_script:
ts = timeseries(randn(10,2),'Name','TS');
put ts in the From Workspace:
But if these are not time variant vectors do the same and use constant block instead, inside its value field put the vectors' name and again put the script that contains these vectors in InitFcn in Callbacks:
X = randi(10,6,1);
Y = randi(10,6,1);
then do the operations you need:
so the To Workspace block named as simout will give you:
simout.Data(:,:,1)
ans =
14
9
16
16
10
3
and finally, if you have lots of those vectors and components, you can create them easily from Matlab Workspace:
my_struct.x = randn(6,1);my_struct.y = randn(6,1);
new_system('myModel')
open_system('myModel')
pos = [10 10 20 30]
for i =1:10
add_block('built-in/Inport',['myModel' '/In1'],'Position',pos);
add_block('built-in/Constant',['myModel' strcat('/Cx', num2str(i))],'Position',pos+2);
add_block('built-in/Constant',['myModel' strcat('/Cy', num2str(i))],'Position',pos+i);
pos = pos + 1;
X_vector = my_st.x
set_param(strcat('myModel/Cx', num2str(i)),'Value', X_vector)
Y_vector = my_st.x
set_param(strcat('myModel/Cy', num2str(i)),'Value', Y_vector)
....
of course this for loop code is here to give you the idea, and in reality will be more complex and you will know how to handle it the best.

Matlab-reading large netcdf files

I have a 17G netcdf file that I am trying to use for analysis. Each variable in the netcdf file is set up like: variable(x,y,z,time). I would like to read in and analyze the variables one 'time' at a time for analysis in Matlab. In other words, I want to use all x, y, and z points at one time. In the past I have had smaller files so reading in a variable has been set up like
fid=netcdf.open('filename/location','NC_NOWRITE');
var_id=netcdf.inqVarID(fid,'varname');
var=netcdf.getVar(fid,var_id);
Is it possible to read in the variables using one time step when the variable is read in? (Incorrect syntax) It'd essentially look like
var=netcdf.getVar(fid,var_id,[:,:,:,time_index]);
Yes, the matlab netcdf command supports this, almost the way you wrote it:
data = netcdf.getVar(fid,var_id,var_index,var_length)
See the matlab documentation for more information. You can also use high-level matlab commands instead of the netCDF library functions.
For example, if varname is a 100x4 array, you could get row 7 by using:
% read 4 columns from 1 row of data starting at row 7, column 1
v = ncread('filename/location','varname',[7 1],[1 4]);
or a four-dimensional array, as in the question:
% read all data from dim. 1-3 at dim 4 = 27
v = ncread('filename/location','varname',[1 1 1 27],[Inf Inf Inf 1]);

Numerical Matrix CSV -> Covariance Matrix

I have a CSV file containing a numerical matrix with over two thousand New York Stock Exchange listed companies' value over two years.
It seems like it should be really simple - I want to attain a covariance matrix formed from the CSV matrix.
As far as I'm aware I simply need to:
Import the data as numerical matrix (just the data no headings etc) using the MATLAB Import Data button.
Press save as on the workspace variable and make e.g. NYSE.mat.
In my function call cov(NYSE.mat);
This should access the matrix and return a large covariance matrix from my data. The cov() function works when i manually input an example matrix of for example:
[5 0 3 7; 1 -5 7 3; 4 9 8 10];
But for some reason whenever I try to call cov(NYSE.mat); only one number is returned, rather than a covariance matrix.
Can anyone tell me where I'm going wrong? I've been trying to figure this out for a while now and I feel the answer should be really simple.
I'm running on MATLAB R2016a.
Not sure you need to manually save the workspace name in step 2. As part of your import process you once you click the import button the variable should be loaded into workspace with the name of the file (maybe NYSE)
Try Load('NYSE.mat') and see what appears in your workspace.
Once you figure out the name of the variable, calling the function with that.
If your CSV file is without any header lines (not sure if any CSV file needs them) and contains only numbers, you can simply call
x = importdata('<nameofyourcsv>.csv');
and then
c = cov(x);
or even do it in one step:
c = cov(importdata('nameofcsv.csv'));
This function is equivalent of clicking on the button you mention. However, if your file contains header lines, you have to specify its number and call this function with more parameters:
x = importdata('nameofcsv.csv',',', nh); % nh is a number of header lines
x will no longer be a regular MATLAB matrix but a structure with following fields: data, textdata, and colheaders. cov(x.data) will calculate covariance. Not sure why you would need to save anything in a mat file, though. If you wish, you would probably need to assign a value from a data field to a regular variable and then save such variable. Otherwise, you will save the whole x structure.
For instance, the following file, test.csv:
95.01,76.21,61.54,40.57,5.79,20.28,1.53
23.11,45.65,79.19,93.55,35.29,19.87,74.68
60.68,1.85,92.18,91.69,81.32,60.38,44.51
48.60,82.14,73.82,41.03,0.99,27.22,93.18
89.13,44.47,17.63,89.36,13.89,19.88,46.60
can be imported by calling importdata:
>> x = importdata('test.csv')
x =
95.0100 76.2100 61.5400 40.5700 5.7900 20.2800 1.5300
23.1100 45.6500 79.1900 93.5500 35.2900 19.8700 74.6800
60.6800 1.8500 92.1800 91.6900 81.3200 60.3800 44.5100
48.6000 82.1400 73.8200 41.0300 0.9900 27.2200 93.1800
89.1300 44.4700 17.6300 89.3600 13.8900 19.8800 46.6000
EDIT
I downloaded the file and copy pasted this command from your answer:
c = importdata('nyse_data_matrix_no_tags.csv');
Then, I opened the file in a text editor and copied 1st and 20th row of numbers in the file and created a matrix in MATLAB:
x = [46.09,24.69,156.78,5.95,21.14,76.17,55.51,7.04,38.87,19.58,47.57,7.73,119.44,1.61,44.55,24.9,50.89,4.87,26.25,15.95,15.96,39.14,121.27,15.7,25.91,25.8,69.7,16.32,12.86,7.89,247.4,27.11,41.6,5.14,47.77,40.98,13.78,26.058,14.56,41.05,24.27,47.13,40.92,27,85.04,15.06,5.05,29.14,7.51,67.5,67.79,42.68,124.86,24.28,27.82,18.08,100.67,109.07,12.59,50.34,18.64,4.75,6.06,16.63,109.86,14.1,54.48,13.9,59.98,16.24,45.53,4.06,67.99,18.22,4.2,117.23,158.75,5.7,2.46,76.39,77.79,6.17,16.95,5.27,12.74,14.7,19.14,14.4,42.77,26.4,14.17,76.57,12.4,42.07,77.47,41.27,60.53,16.97,65.71,56.13,258.4,28.96,760.07,60.46,34.77,133.1,14.19,29.41,11.78,154.55,44.75,15.18,17.52,24.86,36.18,14.1,30.1,47.65,22.92,47.37,61.84,226.52,10.2,65.14,7.88,16.34,170.23,9.6,34.42,15.0999,20.34,58.7,16.6,14.72,14.32,20.89,14.32,13.2,6.05,422.96,21.43,47.55,13.28,27.98,8.16,45.15,15.1665,41.65,17.45,25.73,63.03,16.07,17.56,11.54,6.54,33.18,15.01,357.96,74.88,15.24,27.24,69.08,36.29,76.55,65.72,50.93,72.73,16.13,23.81,52.14,16.05,12.19,71.77,14.97,11.82,33.04,7.86,15.26,72.46,15.42,24.49,15.75,63.78,32.43,36.57,16.24,7.08,26.08,15.74,14.78,16.22,16.85,23.32,31.14,12.72,6.7,26.65,24,12.95,129.92,20.07,11.28,34.66,12.86,17.5,26.5,0.7038,1.22,128.98,23.33,19.2,15.64,8.34,45.01,38.14,50.31,13.11,17.4,47.15,79.29,8.24,28.92,24.97,1.92,77.16,126.5,8.97,3.97,12.85,30.75,37.82,2.36,10.37,52.28,1.56,53,47.33,41.32,10.65,15.24,39.5,94.42,12,54.25,48.03,3.72,6.34,18.5,23.47,26.74,8.74,6.7,7.08,70.92,27.3,65.43,18.776,7.82,16.8,12.0625,124.24,29.79,22.88,29.4,66.44,28.88,1.505,0.8642,10.37,47.14,99.83,133.87,46.41,4.88,57.63,14.45,11.2,34.99,11.06,129.25,7.71,35.2,2.29,2.53,1.65,13.74,15.6,11.84,59.79,33.85,62.48,72.34,25.15,131.2,61.13,2.17,5.1,53.35,26.9,43.15,10.8,63.61,130.91,81.42,45.29,17.58,415.79,118.64,73.88,9.85,79.22,43.39,4.86,32.18,68.36,60.21,34.15,19.47,23.39,29.96,39.58,14.66,5.98,70.87,25.9,38.64,90.45,165.2,46.57,83.18,16.48,134.15,54.68,62.51,12.25,24.33,17.69,60.73,11.51,15.6,85.99,80.81,59.9,17.48,30.73,104.34,0.94,86.03,82.73,14.41,34.05,17.2,11.98,13,52.5,39.2,19.58,101.59,26.38,44.13,18.72,23.3,32.05,27,26.12,13.13,18.58,6.07,73.74,3.53,42.4,12.21,15.72,16.71,26.27,26.69,4.52,35.99,26.1,17.31,45.61,67.9,11.15,13.08,1.1,9.7001,17.51,59.8,26.27,86.95,18.95,26.75,34.33,66.72,107.98,9.7,18.27,24.16,56.8,46.56,91.69,21.43,78.75,3.37,13.71,31.73,100.39,5.65,6.98,85.21,97.84,13.5,26.19,42.43,26.73,10.11,47.95,102.84,66.95,28.35,14.07,5.25,23.68,127.43,11.41,10.43,4.19,25.48,19.78,72.08,53.59,17.41,36.57,92.37,127.48,23.98,16.46,5.28,24.76,9.1,68.33,64.45,8.15,18.54,8.85,119.72,3.62,20.49,2.57,94.05,16.99,25.93,25.12,25.71,9.68,81.26,16.7,77.21,37.45,80.43,6.95,24.95,87.1,20.74,31.82,25.44,25.48,25.5515,46.96,19.11,43.49,10,8.68,16.99,120.79,3.95,1.91,76.54,7.8,33.71,14.59,13.5,15.99,42.6,38.86,46.76,8.1,23.14,23.04,17.39,15.4399,13.62,14,125.94,13.92,22.98,48.68,4.62,68.17,1.14,9.82,29.75,73.66,6.51,92.28,25.53,25.6,25.63,7.59,72.9,25.23,10.41,27.87,10.81,48.76,11.38,3.76,71.78,13.21,53.59,25.55,42.43,68.21,66.25,37.2,6.1,6.24,84.58,13.17,13.2,22.92,82.95,28.9,6.07,74.57,29.35,74.89,64.46,77.91,30.21,11.09,6.34,21.69,56.88,15.25,41.44,1.77,67.42,209.26,11.24,15.8,13.53,15.09,32.8,9.78,12.99,62.77,21.8,39.11,78.68,14.75,10.67,20.6,10.57,36.39,7.24,6.1,13.61,14.58,51.04,20.36,102.48,35.14,12.31,8.98,3.7,81.22,89.67,27.32,13.26,1.54,37.84,11.29,8.98,24.08,4.43,8.54,15.51,36.26,9.33,6.56,43.38,13.04,10.9,54.68,160,164.11,34.25,15.87,14.65,18.72,10.57,13.25,21.08,62.55,6.08,22.72,17.25,14.1,11.91,16.5,17.36,4.93,31.46,75.14,32.84,55.65,21.39,18.76,53.36,52.27,150,11.51,50.35,4.77,16.2,13.83,43.24,94.4,37.89,13.18,35.9,70.65,14.16,11.8273,12.67,22.93,11.11,13.55,9.55,14.24,26.44,13.49,69.92,9.88,157.12,14.93,6.53,13.5,6.83,28.27,13.07,48.33,59,9.67,2.04,28.2,5.82,31.87,65.9,33.14,36.14,30.08,8.49,64.92,4.76,141.98,8.63,10.11,17.27,19.65,30.24,26.53,40.67,26.87,26.25,39.18,1.54,33.93,16.59,7.33,15.36,13.91,1.1,17.12,4.47,15.67,18.68,1.79,15.54,81.13,21.34,27.59,7.46,10.77,503.01,19.74,18.46,15.26,47.57,30.24,6.55,65.34,4.13,13.2,21.55,21.03,29.36,27.27,47.72,10,26.17,7.45,7.62,3.48,18.15,8.2,20.66,97.23,59.46,13.37,7.8,76.6,19.31,9.21,24.18,77.53,0.9,10.8,153.17,23.32,1.18,25.83,42.06,1.48,11.49,24.78,18.24,21.24,6.59,44.54,33.28,64.61,227.17,30,48.14,29.72,45.5,79.45,26.83,4.96,81.03,30.76,72.15,34.48,129.3,65.48,33.48,67.43,34.31,15.05,60.38,32.59,26.84,1.7,32.48,2.31,113.96,1.13,7.3,31.13,12.27,44.48,163.75,4.55,4.93,49.64,7,0.42,4.66,62.44,41.56,21.6,8.18,26.89,33.78,3.79,47.23,27.86,0.5199,45.15,117.21,9.51,74.52,1.8,67.24,22.28,22.735,28.48,13.84,19.61,26.62,25.78,18.95,33.53,21.54,51.22,13.79,34.9,81.22,6.86,15.59,96.42,18.49,31.21,24.57,21.23,22.93,16.32,10.63,11.18,188.35,16.08,18.39,18.17,43.96,62.54,8.82,1.87,33.38,14.9,10.47,16.69,3.2,8.89,3.95,50.02,153.42,7.65,35.53,0.54,18.36,5.24,262.52,4.07,74.98,12.53,13.66,86.82,129.8,24.78,9.8,7.03,21.68,8.1,17.1,7.5,38.4,118.45,6.47,26.92,17.2,7.6,35.32,1.72,25.83,9.11,26.27,13,12.18,12.29,44.75,26.22,7.44,44.5,43.59,24.19,1.35,13.57,65.69,13.29,37.11,6.3,16.42,15.98,25.62,25.8,25.93,101.16,45.95,17.1,35.85,108.8,11.53,13.84,14.7,29.07,68.14,19.1,63.34,13.98,44.89,8.42,11.42,6.6,52.51,7.77,10.61,14.67,11.98,0.4476,15.65,14.54,21.3,122.3,22.92,13.03,7.38,5.41,22.4,117,14.97,17.58,9.98,22.08,10.13,23.79,64.75,9.23,16.0197,8.25,16.56,10.61,15.97,11.8,14.82,39.57,77.69,50.96,41.52,30.2,14.56,15.27,13.66,19.89,0.3292,2.93,26.22,72.39,12.44,33.06,26.14,26.96,5.15,29.29,5.31,8.85,29.28,15.21,21,13.64,130.69,15.04,26.49,18.08,8.27,24.92,51.81,15.55,12.13,24.95,26.79,45.76,82.08,29.35,5.82,36.58,27.79,62.53,26.16,5.64,16.33,13.71,37.44,11.68,90.18,90.17,14.71,14.2,18.3425,20.81,91.59,10.86,21.05,49.61,40.1,77.37,33.53,69.02,8.1,4.47,24.11,8.38,8.9401,39.17,24.28,40.52,117.73,1.99,50.87,47.66,9.32,11.02,6.59,21.86,13.2401,131.19,23.07,140.8,14.33,147.9,74.43,33.26,240.67,44.33,74.18,39.42,9.31,78.67,8.66,12.41,10.29,38.6,18.01,11.96,11.94,49.05,4.85,17.69,44.19,53.67,47.27,37.6,9.86,14.96,79.92,4.09,24.39,26.39,33.6,97.02,98.48,78.25,79.19,31.84,13.91,7.42,8.95,26.08,16.16,6.51,122.79,17.785,186.88,7.77,101.07,8.48,20.3,53.09,70.02,24.55,51.81,4.93,85.78,23.6,32.98,17.93,29.19,12.71,8.9,43.78,7.35,14.59,12.75,3.05,15.88,7.48,15.32,5.4967,24.88,41.18,5.37,25.09,26.12,22.12,18.47,8.23,17.21,14.3799,197.03,15.16,19.27,4.71,73.13,10.714,4.618,15.6,83.55,99.95,944.3,31.95,186.34,22,66.36,20.31,26.93,168.13,72.451,57.37,6.05,15.05,8.8074,15.5,11.38,60.84,17.25,12.82,65.95,10.1,51.415,109.8275,26.9,19.825,15.4293,36.63,16.29,14.34,15.065,8.44,14.4,16.77,14.84,56.78,13.945,25.58,51.74,10.52,9.3,13.52,68.56,25.73,10.75,73.77,11.61,5.34,116.61,116.86,381.835,6.41,37.74,1.75,1.79,140.44,9.2,25.3,4.81,5.585,58.08,22.97,15.12,16,14.62,16.65,15.09,15.83,30.81,14.73,2.89,8.24,10.74,55.84,11.03,16.31,30.76,16.54,4.64,6.11,5.3,14.99,9.62,14.83,123.98,35.9,29.06,410.2,16.19,56.83,12.49,41.27,72.28,18.24,23.03,21.98,71.37,25.02,13.86,18.36,10.773,13.66,37.26,4.16,54.94,14.14,16.5,3.22,20.7,10.8,1.1,12.84,1.42,14.92,4.03,15.25,13.8336,1.93,14.55,36.2,47.92,10.22,2.8,218.58,5.68,75.56,72.75,2.44,14.85,15.12,92.25,15.14,50.15,16.29,14.64,4.39,16.36,15.1,15.25,5.36,13.9,16.59,14.05,14.05,9.32,13.9,52.42,85.6,25.92,6.15,12.62,75.39,24.26,25.27,13.7,18.84,21.41,5.65,44.37,15.54,50.55,14.99,16.52,41.85,10.55,18.78,56.87,1738.1,80.51,60.58,48.96,59.1,1.49,19.69,16.42,14.9,14.375,15.15,14.76,15.4,12.04,63.98,90.63,46.89,10.77,13.28,50.63,1.76,33.79,16.16,27.71,8.73,31.48,62.99,33.13,19.92,7.89,33.58,35.78,46.53,38.53,23.63,23.77,84.4,19.83,28.76,38.37,7.02,3.73,9.61,15.47,43.98,10.45,19.1,5.11,46.7,23.07,61.76,75.6,3.99,11.95,27.51,99.32,37.51,10.17,13.98,26.18,4.71,20.98,53.83,31.34,25.83,53.61,18.87,6.89,7.39,7.81,62.98,18.95,10.9,9.62,15.03,16.79,27.26,20.91,5.66,16.08,27.44,26.23,44.62,22.25,20.49,103.66,2.53,4.44,43.92,15.08,35.31,43.14,10.1,9.07,11.97,20.15,20.48,83.17,1.94,20.18,32.86,18,115.36,11.46,26.27,14.23,44.33,9.84,19.58,10.13,16.95,84.53,4.44,5.49,40.79,26.17,2.54,16.71,69.64,54.29,23.04,46.29,17.98,49.87,45.06,101.78,27.09,16.72,13.53,7.91,13.27,16.12,12.66,7.08,88.33,13.53,14.1,34.57,60.16,77.17,36.77,60.23,37.78,42.56,17.22,110.43,39.25,1.91,5.22,58.17,4.8,26.87,3.34,52.44,26.2,57.87,16.53,75.15,245.43,103.59,27.06,3.17,11.88,81.13,72.92,14.26,37.51,37.51,8.91,97.21,0.9614,24.1,113.44,164.2,11.21,12.02,6.24,8.67,66.54,19.82,42.46,0.4498,54.44,67.66,7.57,51.06,3.26,24.43,34.63,58.16,6.49,39.18,76.24,9.84,19.3,11.55,45.79,180.42,79.59,3.6,16.22,31.99,59.67,9.7,13.17,5.41,98.19,20.12,59.5,12.99,7.91,28.41,40.99,51.01,78.23,11.47,28.75,26.63,54.23,96.18,7.23,67.31,21.02,16.98,60.5,19.01,7.54,20.58,19.72,115.86,65.41,118.74,28.8,174.25,51.32,18.66,13.09,46.21,76.22,18.38,49.8,13.18,7.3,3.96,136.61,12.21,14.39,21.83,62.39,15.55,26.25,29.47,3.81,14.03,17.05,160.73,4.59,80.74,16.5811,1.2,29.52,35.43,8.3,10.85,16.2,11.87,13.3,71.67,27.33,60.52,9.84,16.14,12.8,1.8,2.42,33.76,47.19,12.62,36.74,13.25,16.07,28.24,15.96,9.15,4.05,8.62,0.5429,34.32,49.07,11.84,293.03,2.22,89.6,25.47,58.42,30.13,143.23,19.4,7.14,36.5,20.46,37.11,30.65,79.96,34.92,101.48,21.29,33.24,68.79,4.22,11.36,38.63,9.02,160.35,28.77,19.05,34.19,72.25,10.46,31.28,96.12,40.86,50.86,1.35,48.37,36.98,20.18,117.48,13.74,201.65,34.85,19.46,46.23,23.88,11.91,110,9.77,16.48,12.72,39.84,5.41,29.03,17.25,103.26,15.36,36.63,38.09,71.67,42.97,78.07,16.86,16.47,6.05,26.51,16.91,25.04,60.29,1.26,154.1,27.67,69.33,29.82,27.84,4.73,10.71,26.4,114.37,34.76,14.74,74.67,10.56,6.56,2.28,88.4,29.03,71.35,31.41,115.33,81.56,9.2,49,15.67,40.09,7.22,5.51,14.13,103.38,19.91,13.95,11.92,70.67,59.99,5.29,44.99,24.99,28.64,25.61,17.31,266.23,26.72,25.77,28.55,5.55,100.29,27.69,10.17,10.83,62.27,55.45,19.42,46.89,20.23,21.13,172.71,16.91,12.11,39.7,13.35,6.37,67.69,29.95,85.31,67.72,16.7,20.74,97.86,9.72,62.52,77.31,9.67,9.29,8.64,34.09,10.59,57.33,39.4,104.5,44.5,60.64,154.15,54.89,105.49,3.66,6.18,29.43,5.93,48.71,22,12.28,169.55,60.98,19.52,39.54,24.25,42.45,18.07,18.85,43.41,2.95,6.6,114.22,28.92,48.51,5.29,7.47,26.23,61.28,78.75,9.14,53.37,10.18,89.37,7.71,6.44,35.18,18.74,32.1,58.58,25.94,25.57,25.65,7.21,8.59,75.01,19.97,39.37,20.79,20.84,43.69,30.96,160.22,38.66,46.7,8.36,9.07,23.13,14.75,7.49,33.71,28.42,26.87,38.33,43.94,19.64,138,56.34,8.25,46.6,2.01,10.5,46.07,117.09,140.68,35.69,89.39,16.82,104.97,74.11,5.09,42.54,28.31,37.91,21.2,3.26,41.98,102.32,19.23,55.7,25.7,25.93,81.26,61.1,108.46,108.45,85.57,18.9,74.53,14,25.85,9.88,35.01,63.16,4.78,15.06,14.49,22.2,2.11,12.35,13.79,53.81,44.61,14.18,9.42,116.83,137,14.42,64,97.18,3.42,13.6,14.05,48.17,25.48,13.49,30.72,11.2,15.78,68.42,51.63,32.15,4.22,51.95,27.55,40.18,77.04,4.18,36.79,140.05,108.68,38.41,59.96,105.5,72.79,25.02,20.17,13.44,62.32,50.91,95.22,26.076,49.14,6.76,3.02,68.92,21.8,42.62,57.25,179.69,11.49,12.14,11.1,13.73,17.08,45.06,13.35,62.62,23.28,9.73,52.25,27.11,71.09,14.52,21.59,30.65,40.03,67.61,11.41,15.19,10.64,34.29,56.11,56.44,30.77,39.05,52.14,136.16,14.58,77.42,2.14,813.78,33.86,59.02,14.77,19.64,17.91,20.05,30.37,68.38,17.44,1.21,120.33,42.7,5.03,33.58,90.67,25.13,29.96,7.31,53.42,10.12,46.3,540.23,4.38,21.64,83.73,5.45,119.4,26.99,12.77,14.28,29.64,11.94,48.14,5.03,5.87,6.16,12.26,8.63,5.89,39.26,2.1,1.36,1.26,2.5,0.62,4.12,2.93,2.18,2.12,5.25,19.03,0.3024,34.93,2.77,16.49,16.56,16.87,12.31,1.72,124.2,0.8722,3.26,0.4964,13.2,20.21,3.47,60.5,20.56,30.64,36.55,11.96,10.97,9.59,48.12,12.96,12.91,16.4,16.5,3,2.515,15.38,15.29,0.58,0.2101,9.79,0.135,13.0101,13.5,13.93,13.47,13.81,13.83,13.78,14.42,14.66,7.91,0.6724,0.3199,2.78,5.77,0.8812,0.71,25.94,1.56,11.79,12.23,6.51,0.9442,4.15,0.4398,2.62,3.67,1.76,0.6489,3.1,30.31,3.48,1.73,8.7,2.19,0.1244,0.1183,4.7,14.19,31.89,7.79,0.4569,1.94,0.5899,12.98,0.8,0.91,2.5,17.57,4.05,0.2399,14,13.18,2.36,0.289,1.03,10.97,63.6,16.08,11.12,16.46,8.52,14.47,5.3801,1.95,3.42,4.39,0.36,4.57,2.75,0.5131,6.37,0.134,16.28,15.34,9.93,15.37,14.36,11.3,33.75,15.68,7.03,0.4907,93.1,0.2569,2.17,15.75,2.84,0.8011,0.788,31.33,0.2799,9.13,8.6001,20.5,44.44,0.7498,2828.02,0.475,1.59,11.705,1.81,0.4725,0.5109,0.82,18.2368,0.331,66.17,0.9543,0.82,0.7501,0.611,1.01,1.3,5.05,0.87,8.01,12.5901,13.04,10.45; 42.73,24.76,150,5.77,20.71,74.78,55.37,7.12,38,18.12,47.27,7.73,116.36,1.53,42.68,24.53,48.12,4.92,26.23,13.99,13.93,36.84,108.6,15.1,26.12,25.67,69.24,15.64,10.78,6.72,216.02,25.4,33.36,5.02,47.32,37.32,12.5,25.62,14.16,38.27,23.77,43.8,42.5,26.17,87.29,15.15,3.46,29.67,8.65,65.57,67.54,40,123.54,24.18,29.23,17.73,95.34,106.56,13,46.95,24.27,4.78,6.91,25.59,105.72,16.08,48.25,13.21,55.8,17.1,42.87,4.1,60.34,17.9,3.95,113.03,157.65,4.66,2.29,74.49,77.63,5.156,15.01,4.73,12.18,13.19,18.94,13.56,38.95,26.5,12.92,76.37,11.9,39.79,74.94,39.73,57.63,15.79,64.34,54.04,252.05,28.39,780.81,55.62,33.36,134.42,14.14,27.79,12.13,143.53,45.63,15.68,17.6099,23.63,33.73,13.27,31.25,47.78,22,46.55,62.6,219.45,9.45,62.11,7.53,15.51,167.15,9.37,35.84,15.15,20.25,57.05,16.73,14.03,15.15,21.68,13.5,12.95,5.77,361.44,20,45.47,13.1493,26.72,7.98,43.36,15.12,39.74,17.21,24.17,60.83,16.14,17.06,10.64,6.51,33.12,15.01,355.6,72.84,14.76,25.95,63.07,36.79,74.35,63.84,50.21,71.28,16.45,22.54,49.04,16.21,11.7,68.62,14.79,11.67,31.86,8.52,15.2,69.08,13.17,24.42,15.695,61.23,26.99,35.29,16.31,7.2,26.24,15.54,14.676,15.41,15.91,22.05,32.12,12.48,4.69,24.92,23.65,12.62,126.5,18.46,9.84,33.75,12.42,16.2,26.35,0.73,1,131.38,22.35,19.1,15.76,7.32,44,33.77,48.56,12.2,17,46.43,77,7.5,28.09,23.02,5,71.7,125.38,8.03,3.7,13.12,28.81,37.62,2.38,11.34,47.1,1.19,54.28,44.8,39.22,10.22,15.06,38.667136,90.46,11.72,55.05,51.05,3.75,6.09,17.3,21.41,26.98,8.02,5.86,6.96,70.73,28.08,59.95,18.42,7.47,14.85,10.75,116.53,27.85,21.76,26.66,61.4,25.71,1.36,0.7901,9.52,48.37,97.37,126.08,47,4.17,55.61,13.77,11.52,34.34,11.3,128.06,7.5,36.89,2.53,2.45,1.92,13.22,15.09,11.57,55.3,32.07,54.38,72.65,25.5,118.7,57.38,1.96,3.02,47.95,26.1,40.55,9.85,59.99,132.88,78.76,42.69,16.91,457.01,114.39,65.76,9.91,77.3,42.09,4.91,32.44,56.43,59.69,35.57,19.17,22.11,28.78506072,38.22,14.41,6.21,69.36,24.4,38.01,89.43,155.41,43.73,76.84,14.55,137.21,53.86,66.5,11.06,22.88,16.63,61.17,11.56,15.03,84.79,86.63,55.48,15.4,29.57,101.26,0.69,81.42,75.89,11.31,30.84,16.28,11.87,13.14,33.72,38.18,19.32,101.5,27.42,36.97,18.89,23.56,32.16,28.46,25.64,12.09,17.48,5.45,72.28,3.18,41.07,12,14.5,16.6,23.78,26.7,4.3,32.7,25.86,16.92,42.77,64.28,11.01,12.18,1.06,9.31,17.79,60.64,26.7,84.15,18.77,26.31,33.03,63.4,109.41,9.44,18.65,23.97,55.3,42.46,83.69,21.05,75.72,3.19,13.49,29.15,98.12,5.61,6.39,82.82,101.71,13.97,28.88,42.06,26.5,13.77,45.51,94.67,62.82,28.92,13.57,5.54,23.2,118.34,11.24,10.36,4.1,24.18,19.05,66.13,51.54,16.37,34.38,95.56,121.46,26.03,16.23,5.81,23.39,9.34,63.81,59.11,7.04,17.84,8.74,120.32,3.48,22.69,2.81,91.33,16.38,26.21,25.87,26.36,9.7,81.08,19.47,75.59,32.71,73.05,6.74,24.96,70.88,18.67,30.92,25.41,25.77,25.54,45.03,18.18,38.88,9.6,6.83,18.73,117.13,2.67,1.63,74.96,7.6,33.59,13.41,12.48,14.62,42.32,40.29,45.55,7.97,21.31,21.03,17.52,15.05,12.98,13.15,122.65,13.51,23.8,43.08,4.73,63.4,1.11,9.25,29.82,71.94,6.25,94.61,25.47,25.5,25.6,8.26,73.64,25.3472,9.25,27.04,10.43,47.6,10.72,3.73,74.8,12.43,52.91,25.95,40.24,65.54,57.95,31.03,6.08,6.01,80.5,12.78,12.84,22.79,78.1,26.27,5.45,71.78,28.39,75.98,69.88,70.64,29.83,9.78,5.24,21.61,57.63,14.74,39.23,2.22,67.5,229.93,10.46,16.22,12.97,14.48,32.22,9.72,12.03,62.07,21.32,35.18,77.07,14.77,10.36,20.38,10.38,34.93,7.27,5.86,13.4,14.27,49.49,19.9,105.59,35.46,12.1,8.76,3.71,76.56,93.4,26.7508,13.35,1.5616,37.34,11.09,8.77,23.13,3.69,8.75,15.99,33.96,8.88,7.2,40.96,12.63,11.03,50.51,151.66,159.37,33.97,14.26,14.12,15.95,10.97,12.71,20.91,60.72,6.19,24.8,19.69,13.76,11.67,15.79,16.34,5.08,31.41,71.77,31.24,59.04,21.3,19.4,51.33,45.98,150.93,11.97,46.99,3.62,15.94,12.44,42.09,92.59,34.16,12.75,33.76,68.09,13.78,11.29,11.59,22.82,11.32,12.13,8.73,14.23,24.79,13.18,67.95,7.87,156.56,14.55,6.32,12.9,6.42,28.01,11.1,44.19,58.5,10.19,2.02,27.25,5.52,30.68,65.85,31.31,36.24,26.55,8.14,63.6,4.5399,145.31,8.23,10.05,16.99,18.57,30.09,26.28,35.4,26.45,26.04,34.48,2,32.72,15.9,6.69,16.28,14.04,1.23,16.22,4.14,15.55,18.02,2,15.0649,81.11,19.31,28.13,7.19,10.3699,486,19.44,17.82,14.61,45.82,29.75,6.4,64.72,4.8,13.02,19.25,18.88,31.18,29.1,44.92,8.97,25.04,7.69,7.13,3.66,17.73,8.91,19.92,97.11,61.24,13.39,7.44,74.37,17.86,8.96,23.74,77.81,0.94,10.21,158.07,23.8101,1.13,25.82,42.07,1.68,11.36,21.6,16.51,20.69,6.53,43.16,31.11,58.84,227.76,31.76,48.71,26.58,40.05,73.47,26.96,3.89,77.69,31.86,72.09,34.24,134.19,64.38,33.98,61.59,32.8,14.86,58.14,30.69,28,1.68,31.8,1.57,103.61,1.45,7.19,30.83,11.66,44.5,153.62,4.15,4.72,48.09,6.87,1.03,4.28,61.99,40.15,21.93,7.15,27.61,33.08,3.2,42.95,28,0.47,45.62,114.19,9.93,74.87000442,1.58,58.65,22.12,22.22,28.77,11.56,19.07,26.41,23.68,17.34,31,19.52,47.73,13.99,40.21,76.11,6.56,15.89,93.16,18.9,30.46,24.89,19.17,23.46,16.61,10.23,8.06,165.81,13.99,18.01,18.9,44.81,60.52,8.49,1.86,27.86,14.41,10.21,18.12,3.83,8.58,3.8,50.25,148.84,6.99,31.25,0.71,18.33,4.1,262.14,4.42,73.91,12.1,13.20970759,82.33,126.16,23.09,9.72,6.89,21.29,8.03,15.6,7.22,38.87,120.44,6.3,25.71,17.36,7.56,33.25,1.57,24.45,8.72,26.49,12.04,11.84,12.28,45.4,26.41,7.56,31.41,42.6,23.86,1.34,13.53,65.92,13.47,38.08,5.74,15.31,15.41,26.02,25.712,25.8,98.08,44.54,18.55,34.85,104.53,10.66,12.91,13.9,29.06,71.17,17.01,57.81,13.55,41.32,7.8,11.16,6.27,49.81,7.64,10.32,13.94,10.81,0.7498,15.52,14.21,20.62,109.04,23.01,11.65,7.36,5.17,21.85,114.23,14.3,16.77,9.77,16.49,10.03,23.69,61.77,9.17,15.36,7.87,15.77,10.07,15.29,11.25,14.1294,45.23,77.31,47.89,39.54,28.44,12.82,14.53,13,17.54,0.3641,2.55,26.31,63.92,11.88,31.72,25.69,26.505,4.6,27.83,5.09,8.76,29.12,14.53,21.01,12.98,130.06,12.4829,22.18,17.03,8.19,23.47,51,12.27,12.14,23.41,26.5,45.83,82.63,25.37,4.86,34.89,26.94,64.14,27.98,5.83,14.68,14.03,35.15,11.42,90.18,90.19,14.23,14.2,17.96,20.06,84.41,9.49,17.12,49.09,39.65,78.86,33.65,67.42,8.02,3.76,18.32,8.16,8.72,37.4,23.33,38.52,114.6,1.95,49.43,43.7,9.16,10.56,6.65,20.49,12.67,125.76,23.95,138.26,11.58,135.78,75.96,31.26,244.94,43.04,69.13,37.05,9,75.4,9.47,11.17,10.59,37.12,18.04,11.86,11.52,48.01,5.05,17.57,41.22,53.75,45.64,37.03,9.42,14.2,81.25,3.82,23.04,25.5,31.21,95.85,101.87,76.99,77.16,31.35,14.14,7.16,9.19,26.91,16.35,6.66,130.12,17.82,167.3,7.4,94.74,8.25,19.75,52.51,68.69,22.35,50.39,4.59,81.34,21.87,34.95,17.28,28.62,12.61,7.18,43.51,7.12,14.2,12.4392,3.04,15.53,7.53,14.95,5.39,23.75,40.57,5.33,21.94,26.2,20.78,18.4,8.35,16.08,14.67,194.42,15.58,18.03,4.52,69.18,9.39,4.635,15.05,83.71,98.34,958,29.91,184.75,19.84,63.95,20.38,25.15,168.32,69.68,53.16,5.85,15.33,9.14,15.6346,10.9,58.4,17.21,11.96,64.58,10.38,46.74,99.94,24.84,24.63,15.7076,35.49,15.5,14.35,14.32,8.48,14.67,16.79,13.64,53.88,12.3,25.89,47.77,8.74,9.03,12.7,71.11,25.61,10.45,73.73,11.24,4.59,113.23,113.21,367.93,6.47,33.67,1.78,1.76,127.6,8.66,24.38,4.51,5.89,57.46,21.28,14.94,16.22,14.53,16.88,15.18,16.01,29.14,14.41,2.56,7.14,8.3,52.61,11.04,15.56,28.02,14.96,4.48,5.8,5.07,13.27,9.06,14.79,121.15,33.21,29.22,405.47,16.15,54.74,12.36,38.63,73.47,13.33,22.42,19.85,69.31,23.96,13.83,17.87,10.84,13.66,36.3,3.9,57.99,14.29,16.38,2.68,19.74,11.1,0.7972,12.62,1.32,14.84,4.16,14.99,13.65,1.67,14.2,36.65,47.36,10.19,2.39,217.98,5.18,67.47,67.38,2.49,14.9101,14.98,87.78,15.16,48.04,16.4,14.66,4.01,16.26,14.9,15.22,4.52,13.1,15.63,13.92,11.83,8.35,13.37,47.97,88.18,24.73,5.89,11.49,66.05,23.18,24.66,13.64,18.25,21.08,5.83,46.78,15.31,47.44,14.8,16.29,39.8,10.56,18.1769,54.18,1652,74.88,58.43,48.54,57.45,3.29,18.28,16.68,14.73,14.4,15.09,14.6,15.3,12.17,64.14,88.71,45.68,9.54,13.13,49.41,1.99,33.03,14.84,26.89,8.23,30.99,60.32,32.83,18.97,7.94,32.53,31.42,40.29,37.61,21.53,23.34,84.26,19.57,30.51,36.94,6.75,3.93,9.55,13.82,42.61,10.4,19.09,5.1,45.36,22.22,60.82,76.48,3.83,10.09,23.76,100.8,35.59,9.68,13.8299,22.69,5.01,26.18,49.77,28.86,28.22,57.08,18.14,7.35,6.69,7.52,59.24,18.25,10.96,9.71,14.5,17.13,27.61,20.4,4.24,15.48,25.48,26.1,46.36,22.88,18.66,106.1,2.5,2.82,43.08,15.28,33.19,42.45,9.82,8.87,12.2,19.49,19.48,82.41,1.61,20.31,33.56,16.83,112.54,10.97,26.26,12.72,36.72,9.54,18.19,9.94,16.9,85.1,4.36,5.52,40.98,26.65,2.41,15.37,66.33,54.48,22.33,44.32,17.24,47.45,42.5,102.18,26.27,16.62,13.59,7.88,13.21,14.92,12.5,7.83,86.18,13.63,13.8001,33.27,59.22,74.44,36.93,59.94,36.56,41.61,15.84,107.49,38.91,1.86,4.97,60.77,4.7,26.82,3.16,49.16,26.76,51.04,11.7,76.43,264.69,99.79,25.91,3.47,11.67,78.25,68.79,13.99,37.08,37.07,8.25,84.16,0.8522,23.41,113.6,167.03,10.9224,12.15,6.25,9.13,65.31,17.91,40.79,0.4101,50.8,68.44,8.01,51.51,2.98,22.82,31.82,57.82,6.13,38.62,77.02,9.3,17.3,12.02,42.86,184.08,78.69,2.9075,13.89,33.35,52.31,9.13,13.23,5.42,95.63,20.99,65.95,13.55,7.5501,35.04,38.6,51.56,71.93,9.68,28.7,26.5,51.29,86.88,7.5,66.85,22.13,15.83,57.81,17.05,7.46,18.45,19.37,113.51,61.99,114.01,27.66,177.15,50.49,18.28,12.85,42.26,72.17,18.31,48.84,12.4,7.49,4.39,131.91,11.75,13.13,20.8,59.97,10.37,25.38,30.05,3.49,13.34,17.08,155.45,4.6,77.25,16.2999,0.934,29.3,33.23,7.84,10.45,14.55,12,12.59,70.57,27.04,58.35,10,14.88,10.28,2.09,2.53,31,47.8,12.04,33.69,13.39,15.4,25.44,15.51,8.74,3.94,8.82,0.6112,33.74,46.08,12.7,296.18,2.76,104.1,24.25,58.36,26.73,131.51,19.1,6.2,34,20.25,35.46,31.44,74.09,33.9,104.1,18.92,29.05,66.83,4.22,10.1999,37.26,8.34,163.29,25.84,18.34,33.91,66.17,11.16,30.41,79.67,39.24,50.16,1.22,47.28,36.96,19.69,117.73,13.52,204.04,31.79,15.78,47.26,21.29,11.96,105.37,9.1,14.79,11.24,37.97,6.23,29.64,15.22,114.7,15.85,34.11,36.47,71.76,41.35,75.83,16.03,15.7,5.34,24.84,16.77,25.04,60.03,1.32,161.9,26.57,71.37,33.6,26.29,4.48,9.71,26.4199,113.65,34.67,11.86,69.19,10.2832,5.64,2.15,81.34,27.63,66.56,29.42,111.82,80.81,8.96,50.18,14.9101,39.55,7.04,5.41,14.51,99.73,18.54,13.26,9.71,71.51,52.38,5.77,43.79,25.21,27.31,25.3892,16.5384,247,25.9599,25.5,28.13,7.35,93.9,27.53,10.79,10.36,58.72,51.73,19.11,45,18.5,23.04,161.97,15.93,12.89,36.18,14,6.34,75.6,28.41,86.79,64.86,15.994,18.83,93.48,9.51,66.37,74.28,9.84,9.24,8.43,33.47,9.95,56.57,40.87,101.38,44.3,58.55,148.92,53.07,105.69,3.96,5.77,26.71,5.95,49.04,20.45,10.88,162.1,58.01,18.81,35.46,20.01,41.42,17.28,17.29,40.33,2.82,6.3,112.64,26.1,44.12,5.27,8.25,22.99,68.65,75.61,9.07,53.28,10.89,87.69,7.53,5.49,28.77,16.93,31.76,56.22,26.5,25.85,25.7401,6.03,8.52,73.39,17.69,37.86,20.07,20.07,38.7,29.07,148.17,37.66,43.78,7.71,8.06,21.2,15.01,7.65,36.81,27.64,25.07,37.7,41.81,20.87,133.29,56.32,7.4,45.66,1.77,9.84,44.71,111.33,129.74,33.85,83.84,12.96,101.79,60.87,4.87,41.94,27.98,38.29,20.16,3.28,39.63,101.46,18.22,55.85,25.52,26.35,77.89,58.71,106.91,106.8875,82.26,18.76,74.11,14.07,22.74,9.85,32.93,60.84,3.9,14.49,14.35,21.27,1.82,12.3,13.61,54.78,46.51,13.6,9.1,116.12,134.97,14.18,56.62,96.69,3.28,13.6,14.19,47.52,24.93,12.36,27.7,10.77,15.9,66.72,50.39,30.56,4.05,51.47,27.54,37.84,79.17,4.41,34.21,134.96,105.34,35.36,55.08,92.92,69.47039835,24.05,19.76,12.71,60.18,48.91,90.11,26.55,49.2,5.82,2.9,68.28,20.82,40.56,56.32,171.54,11.4,11.94,10.99,11.91,13.69,45.01,10.93,61.78,19.05,9.11,46.67,23.65,66.85,14.14,21.6,30.4,35.89,63.93,10.56,14.96,9.02,29.15,52.18,56.31,29.22,38.54,54.51,133.93,13.7,71.27,2.27,825.61,32.84,56.14,13.07,19.25,17.79,17.89,31.23,69.13,14.81,1.75,115.34,41.85,4.97,33.71,89.67,24.5,27.18,5.98,53.57,9.24,43.24,526.42,3.48,20.92,81.57,5.13,117.44,23.66,12.76,14.3,32.23,12.09,46.25,4.9,5.77,6.24,11.94,8.45,6,38.21,2.05,1.18,1.19,2.17,0.73,3.23,3.05,1.46,2.06,4.68,18.27,0.3199,31.48,2.59,16.44,16.85,16.9,11.91,1.74,122.34,0.82,3.33,0.55,13.02,19.46,2.6,55.43,18.83,28.86,34.75,11.76,10.8,9.5,48.62,12.54,12.8,16.6,16.22,2.9,2.33,16.09,14.56,0.5024,0.24,9.84,0.15,13.19,13.82,14.1466,13.15,13.88,14.07,13.68,14.38,14.85,7.69,0.7663,0.324,1.89,5.35,0.9,0.77,23.7,1.2863,11.39,11.24,6.43,0.97,4.2127,0.3302,2.21,3.5,1.54,0.6,2.65,27.28,2.75,1.78,9.52,2.35,0.11,0.1212,5.68,13.86,31.34,7.6,0.42,1.56,0.6299,12.7,1.05,0.94,2.37,17.12,3.66,0.21,12.61,13.18,1.52,0.3221,0.6634,10.9,63.43,16.37,10.54,16.52,7.5,14.62,5.24,2,3.53,4.53,0.3581,4.75,2.59,0.7299,6.13,0.165,16.42,15.63,9.37,15.04,14.15,10.95,31.46,17.57,6.71,0.525,89.54,0.225,2.27,15.71,2.89,0.84,0.79,30.57,0.2603,8.49,7.26,19.76,44.32,0.6701,2930.11,0.51,2.29,12.6,2.07,0.49,0.5058,1.06,17.75,0.3579,63.51,0.8301,0.75,0.78,0.4875,0.7495,2.52,4.35,0.82,7.66,12.36,12.96,10.735];
I compared matrix x with the 1st and 20th row of c and they are equal:
isequal(x,c([1 20],:))
ans =
1
importdata seems to be working as expected.

How to evaluate MATLAB command inside SIMULINK

Suppose I have variable ii entering into the SIMULINK simulation from workspace and I would like to assign a new value for it after some condition is satisfied and save the value into a workspace. The values of variable could be defined in array, however, array length is not predefined. I see the block "MATLAB Function" could be useful, but is it proper way to evaluate just one simple command like ii=ii+1?
On the picture below started with ii=0, I expected the value of ii to be increased by one until tout>2 and its value to be saved accordingly. But I only got two values of ii: 1 till time of 2 seconds and 0 from time > 2 seconds on.
simulink_scheme
Usually you can use simple operations avoiding use of MATLAB Function Block. In your case there are different solutions. For example this way:
I load ii variable from workspace, check the condition in Switch block, and return new variable with the same name ii to workspace.
But! Important moment here is: to load data into Simulink with From Workspace block loaded data must be in special format: timeseries, matrix or structure. So you can't load just ii=1. And the same thing about To Workspace block - it returns data to workspace in timeseries, array or structure. This mean you take values of ii for every timestep of your simulation.
You can solve this problem using Decimation parameter in To Workspace block, then you can get only last value of ii. To get only value of ii without time column use Save format: Array in To Workspace block options. This let you get just 1 value as you wish. But, now you can simulate your program only 1 time: you load ii with time column (as it necessary for From Workspace block) and save just one value. Simulink can't load now ii because now it hasn't time column!
So the solutions depends on what you want.
P.S. One more advice to you: do not use just i variable! MATLAB has predefined variable i = 0.0000 + 1.0000i - imaginary unit.
I made some workaround this problem and get this example:
Where subsystem is:
Attention: To Workspace block save result as Array (avoiding time column). How it works: create ii=0 in workspace. Start simulation. While subsystem is enabled (t<=2) it will modify ii value in this way: increase ii at every timestep by 1. I mean:
t = 0, ii = 1
t = 1, ii = 2
t = 2, ii = 3
t = 3, ii = 3 ...
at the next simulation we load last value of ii array - ii(end) and continue simulation in the same way.

Input Parameters of a 'From Workspace' Block in Simulink

I have a .mat file which has a structure loaded into the Workspace. I have created a simulink model and want to Import the signals from the Workspace. What should be the Input value for the Data Parameter of the 'From Workspace' block. The Name of the structure is Measurements, the Signal Name is B_cal and it has further elements as time,name, Units and value. I know that the structures can be accessed by somewhat like this command :
Measurements.B_cal.value
But i am unable to set the Input Parameters. Could anyone help me with this ?
There are some limitation to use structures through the FromWorkspace block:
A MATLAB expression that evaluates to one of the following:
A MATLAB timeseries object
A structure of MATLAB timeseries objects
A two-dimensional matrix:
The first element of each matrix row is a time stamp.
The rest of each row is a scalar or vector of signal values.
A structure, with or without time, which contains:
1) A signals.values field, which contains a vector of signal values
2) An optional signals.dimensions array, which contains the dimensions of the signal
3) An optional time vector, which contains time stamps
More useful information you can find in help.
So in your case you can use different methods. I'll give some examples:
1) define your struct in necessary format:
t = (1:10)'; %'
v = [6 9 3 1 7 0 7 3 8 1]'; %'
measure.time = t;
measure.signals.values = v;
Important moment here: t andv must be a columns! rows will not work!
If you need to use several rows of data use multidimensional v and add
measure.signals.dimentions = size(v,2);
2) You can see ths time field is an optional. If you do not have it you need to set Sample time in block other than 0 and, clear Interpolate Data, Set Form output after final data value by to a value other than Extrapolation. Furthermore, you need to define time field:
mystruct.time = [];
3) If you don't want to change your structure, you can use next:
t = (1:10)'; %'
and set this in Data of FromWorkspace block: [t, Measurements.B_cal.value].
4) There are some useful methods: use timeseries or just matrix. But it's not really your case if you need to use your structure.