Change object property via FTL - macros

I want to modify an object before passing it to a FTL macro.
So, I want to get something like this:
obj.x = "123";
<#myMacro obj />
I tried:
<#local obj.x = "123"/>
and
<#assign obj.x = "123"/>
and
<#setting obj.x = "123"/>
but none of these methods worked.
How can I achieve this?

You can't assign values to Freemarker's sequences
FreeMarker template language assumes that sequences (lists, arrays, etc.) and hashes (maps, beans, etc.) are immutable, you can not write something like <#assign myObj.someProperty = 'will NOT work'> or <#assign myList[0] = 'will NOT work'>. However, adding sequences or hashes with the + operator to form another value is supported; see in the chapter about expressions, and please note the performance consequences.
You will need to create another object and assign relevant values

Related

Conditional declaration by array of records

I try to create many components depending on the value of constant elements. These elements are organized in an array of records.
Dymola prints the translation log for the example below:
But I'm sure to use fixed conditions because I only perform allowed operations on constant values.
Here is the simple example of what I wantet to do:
model ConditionalComponent
type Enum = enumeration(one,two,three);
record Tmp
parameter Integer ID;
parameter Boolean active;
end Tmp;
record TmpNamed
parameter Enum name;
extends Tmp;
end TmpNamed;
function reorder
input TmpNamed inp[:];
output Tmp out[size(inp,1)];
algorithm
for elem in inp loop
out[elem.name] := Tmp(elem.ID, elem.active);
end for;
end reorder;
constant TmpNamed testIn[:] = {
TmpNamed(Enum.two,20,true),
TmpNamed(Enum.one,10,true),
TmpNamed(Enum.three,30,true)};
constant Tmp testOut1[:] = reorder({
TmpNamed(Enum.two,20,true),
TmpNamed(Enum.one,10,true),
TmpNamed(Enum.three,30,true)});
constant Tmp testOut2[:] = reorder(testIn);
constant Boolean active1 = testOut1[Enum.one].active;
constant Boolean active2 = testOut2[Enum.one].active;
Real t1=0 if testOut1[Enum.one].active;
//Real t2=0 if testOut2[Enum.one].active;
//Real t3=0 if active1;
//Real t4=0 if active2;
end ConditionalComponent;
The function reorder is intended to ease the management of large lists of named active components. Normally the constant testOut2 is used and created within the package ConditionalComponent. But for testing purposes ConditionalComponent is a model here. Actually I only want to use the line
Real t2=0 if testOut2[choice].active;
parameter Enum choice = Enum.one;
within other components, that have a parameter of type Enum. The declarations for t1, t3, t4 are only some tests that work, depending on what is left uncommented.
For example leaving the declaration for t1 and t3 uncommented works. But if one uses only the declaration for t1, it is not translated by Dymola.
The difference between t1 and t2 is, that the argument for reorder is passed directly or via the constant testIn.
I'm sure, that most parameter and constant prefixes are unnecessary and I tried hard to figure out the problem. But unfortunately I cannot decide whether Dymola is not working correctly or I did something wrong. And I've got no idea how to debug the translation process to figure it out by myself.
Can anyone tell me, what am I doing wrong?
Not something wrong, but it's just currently seen as too complicated and not handled.
A work-around is to split subscripting and element access:
constant Tmp testOut1_one=testOut1[Enum.one];
Real t1=0 if testOut1_one.active;

How to convert a string to a variable name?

I would like to have a construct like below to declare variable names based on a string queue. The below doesn't compile. So I would like to know if a similar approach is possible in Systemverilog.
Below is a simplified version of what I want to actually implement.
`define declare_int(NAME) int ``NAME`` = 1;
string str_q[$] = {"a", "b", "c"};
foreach (str_q[i]) begin
`declare_int(str_q[i])
end
NOTE: I am aware that `declare_int(a) will translate to int a = 1;. But as shown in the example above, I need a foreach loop to call this macro multiple times and so the input of the macro has to be some datatype, like a string in this case. The purpose is to auto-declare stuff as the queue changes with time.
In other words, how can I define the `declare_int macro so that `declare_int("a") translates to int a = 1;?
As Verilog is not interpreted but compiled in simulation, I doubt theres any way to dynamically declare variables at runtime. However, there are work arounds that achieve a similar effect.
I think the closest thing you could get is an associative array with the keys as your names (a, b, c) and your values for the values. For example, instead of your code, you'd have:
int vars[string];
string str_q[$] = {"a", "b", "c"};
foreach (str_q[i]) begin
vars[str_q[i]] = 1;
end
...
// To use the variable, just do:
vars["a"];
For more on associative arrays: http://www.asic-world.com/systemverilog/data_types13.html

MATLAB assign variable name

I have a variable called 'int' with alot of data in it. I would like to find a way to programically rename this variable with a user input. So I can query the user indentifcation information about the data, say the response is 'AA1', I want either rename the variable 'int' to 'AA1' or make 'AA1' a variable that is identical to int.
A problem using the input command arises because it allows the user to assign a value to an already created varialbe, instead of actually creating a variable name. Would using the eval function, or a variation of it, help me achieve this? Or is there an easier way?
Thanks!
Just for the record, int is a rather poor variable name choice.
That aside, you can do what you want as follows
say foo is the variable that holds a string that the user input. You can do the following:
% eliminate leading/trailing whitespace
foo = strtrim(foo);
a = regexp('[a-zA-Z][a-zA-Z0-9_]*',foo));
if numel(a) == 0
fprintf('Sorry, %s is not a valid variable name in matlab\n', foo);
elseif a ~= 1
fprintf('Sorry, %s is not a valid variable name in matlab\n', foo);
elseif 2 == exist(foo,'var')
fprintf('Sorry, %s already in use as a variable name.');
else
eval([foo,' = int']);
end
Assuming int (and now foo) is a structure with field named bar, you can read bar as follows:
barVal = eval([foo,'.bar']);
This is all somewhat clunky.
An alternative approach, that is far less clunky is to use an associative array, and let the user store various values of int in the array. The Matlab approach for associative arrays is Maps. That would be my preferred approach to this problem. Here is an example using the same variables as above.
nameValueMap = containers.Map;
nameValueMap(foo) = int;
The above creates the association between the name stored in foo with the data in the variable int.
To get at the data, you just do the following:
intValue = nameValueMap(foo);

Is it possible to add methods on the fly to MATLAB classes?

Writing a subclass of dynamicprops allows to me to add properties dynamically to an object:
addprop(obj, 'new_prop')
This is great, but I would also love to create set / get functions for these properties on the fly. Or analysis functions that work on these dynamic properties.
My experience with Matlab has been so far, that once I create an instance of a class, adding new methods is not possible. That is very cumbersome, because my object may contain a lot of data, which I'll have to re-load every time that I want to add a new method (because I have to do clear classes).
So is there a way to add methods on the fly?
You cannot add methods like you add dynamic properties. However, there are two ways for implementing new methods during development that won't require you to re-load the data every time.
(1) I write standard methods as separate functions, and call them as myMethod(obj) during development. Once I'm sure they're stable, I add their signature into the class definition file - this requires a clear classes, of course, but it is a much delayed one, and from time to time you may have to shut down Matlab, anyway.
(2) With set/get methods, things are a little trickier. If you are using dynamicprops to add new properties, you can also specify their set/get methods, however (most likely, these methods/functions will want to receive the name of the property so that they know what to refer to):
addprop(obj,'new_prop');
prop = findprop(obj,'new_prop');
prop.SetMethod = #(obj,val)yourCustomSetMethod(obj,val,'new_prop')
EDIT
(2.1) Here's an example of how to set up a hidden property to store and retrieve results (based on jmlopez' answer). Obviously this can be improved a lot if you have a better idea what you're actually designing
classdef myDynamicClass < dynamicprops
properties (Hidden)
name %# class name
store %# structure that stores the values of the dynamic properties
end
methods
function self = myDynamicClass(clsname, varargin)
% self = myDynamicClass(clsname, propname, type)
% here type is a handle to a basic datatype.
self.name_ = clsname;
for i=1:2:length(varargin)
key = varargin{i};
addprop(self, key);
prop = findprop(self, key);
prop.SetMethod = #(obj,val)myDynamicClass.setMethod(obj,val,key);
prop.GetMethod = #(obj)myDynamicClass.getMethod(obj,key);
end
end
function out = classname(self)
out = self.name_;
end
end
methods (Static, Hidden) %# you may want to put these in a separate fcn instead
function setMethod(self,val,key)
%# have a generic test, for example, force nonempty double
validateattributes(val,{'double'},{'nonempty'}); %# will error if not double or if empty
%# store
self.store.(key) = val;
end
function val = getMethod(self,key)
%# check whether the property exists already, return NaN otherwise
%# could also use this to load from file if the data is not supposed to be loaded on construction
if isfield(self.store,key)
val = self.store.(key);
else
val = NaN;
end
end
end
end
I'm adding this answer because I think that this is not intuitive. At least not to myself at this moment. After finding this question I thought I had what I needed to be able to define the set/get methods for my dynamic class. All I wanted to achieve with this was something similar to what python does with its __setattr__ method. In any case, here is a continuation of the class made by #jonas a while ago with a few modifications to add the our custom set method.
classdef myDynamicClass < dynamicprops
properties (Hidden)
name_ %# class name
end
methods
function self = myDynamicClass(clsname, varargin)
% self = myDynamicClass(clsname, propname, type)
% here type is a handle to a basic datatype.
self.name_ = clsname;
for i=1:2:length(varargin)
key = varargin{i};
addprop(self, key);
prop = findprop(self, key);
prop.SetMethod = makefunc(key, varargin{i+1});
end
end
function out = classname(self)
out = self.name_;
end
end
end
function h = makefunc(key, argtype)
h = #newfunc;
function newfunc(obj, val)
obj.(key) = argtype(val);
end
end
With this class I'm defining the set method so that the parameter passed to the attribute is copied to the right type. To see what I mean consider the following usage:
>> p_int = myDynamicClass('Point', 'x', #int8, 'y', #int32);
>> p_int.x = 1000
p_int =
myDynamicClass with properties:
y: []
x: 127
>> class(p_int.x)
ans =
int8
With this we have forced the x attribute to be an integer of 8 bits which can only hold integers from -128 to 127. Also notice how the class of each attribute gives us the intended type.
My experience with Matlab has been so far, that once I create an instance of a class, adding new methods is not possible. That is very cumbersome, because my object may contain a lot of data, which I'll have to re-load everytime that I want to add a new method (because I have to do clear classes).
It's worth noting for present-day readers of this question that this is no longer true. As of MATLAB R2014b MATLAB updates class definitions at the moment you save them, and the behaviour of existing class instances automatically updates accordingly. In the case of adding new methods, this is uncomplicated: the new method simply becomes available to call on class instances even if they were created before the method was added to the class.
The solutions given for choosing set/get methods for dynamic properties still apply.
There are still cases where you might want to add methods to an instance dynamically and the method doesn't constitute a property set/get method. I think the only answer in this case is to assign a function handle as the value to a dynamic property. This doesn't create a bona fide method, but will allow you to call it in the same way you would a method call:
addprop(obj, 'new_method');
obj.new_method = #(varargin) my_method(obj,varargin{:});
Calls to obj.new_method(args) are thus passed to my_method; however this only works with a scalar obj; an array of instances will have separate values for the new_method property so obj.new_method no longer resolves to a single function handle that can be called if obj is an array.

Matlab dynamic fieldnames structure with cell arrays

How can i access the following structure path with dynamic fieldnames:
var = 'refxtree.CaseDefinition.FlowSheetObjects.MaterialStreamObjects{8}.MaterialStreamObjectParams.Pressure.Value.Text';
fields = textscan(var,'%s','Delimiter','.');
refxtree.(fields{:}) does not work because MaterialStreamObjects contains a cell array of which I want to access the 8th cell and then continue down the structure path.
In the end I want to get and set the fieldvalues.
You need to build the appropriate input to subsref, possibly using substruct. Look at the MATLAB help.
You can define an anonymous function to navigate this particular kind of structure of the form top.field1.field2.field3{item}.field4.field5.field6.field7 (as an aside: is it really necessary to have such a complicated structure?).
getField = #(top,fields,item)top.(fields{1}).(fields{2}).(fields{3}){item}.(fields{4}).(fields{5}).(fields{6}).(fields{7})
setField = #(top,fields,item,val)subsasgn(top.(fields{1}).(fields{2}).(fields{3}){item}.(fields{4}).(fields{5}).(fields{6}),struct('type','.','subs',fields{7}),val);
You use the functions by calling
fieldValue = getField(refxtree,fields,8);
setField(refxtree,fields,8,newFieldValue);
Note that fields is required to have seven elements. If you want to generalize the above, you will have to dynamically create the above functions
In this case, it is easier to just use EVAL:
str = 'refxtree.CaseDefinition.FlowSheetObjects.MaterialStreamObjects{8}.MaterialStreamObjectParams.Pressure.Value.Text';
%# get
x = eval(str)
%# set
evalc([str ' = 99']);