SCNNode Rotation Multiple Axes - swift

This Question was posted, but never answered.
Similar to This Question, I am trying to understand SCNNode.rotation as a 4D vector. The prior question utilizes an example that only manipulates 1 axis, i.e.,
SCNNode.rotation = (0, 0, 1, degToRad(45)) //Rotate about z-axis by 45 degrees
which makes sense; however, what if I wanted to rotate the X axis by 20 degrees, Y axis by 45 degrees and then Z axis by 78 degrees?
SCNNode.rotation = ??
I would provide code I've tried, but I don't understand conceptually the notion of a 4D rotation vector.

Every node just has a transform with 4x4 matrix. So all the rotation operations are reflecting in the changing the transform.
In this case, if you change either of rotation, eulerAngles and orientation, you are supposed to get same value.
If rotating about three axises, I suggested using eulerAngles.
node.eulerAnges = SCNVector3(x:degToRad(20),y:degToRad(45), z:degToRad(78))
After you set this, go back and check to value of rotation:
SCNVector4(x: -0.16975601, y: 0.5943193, z: 0.786109, w: 1.448788)
This means there is an axis going through point(-0.16975601, 0.5943193, 0.786109) and origin (0,0,0), and node is rotating around it for 1.448788 (82 degree).

Related

Rotating rotation value by different normalized vector directions

I have written a script in Unity which takes a SkinnedMeshRenderer and AnimationClip and rotates the vertices in each by a specified number of degrees. It looks mostly correct except that rotations seem to be incorrect. Here is an example bone rotation (in euler angles) in the skeleton along with the correct values that would be needed for the animation to look correct.
With no rotation: (0, 0, -10)
Rotated 90 degrees: (-10, 0, 0)
Rotate 180 degrees: (0, 0, 10)
I have been trying to find a way to rotate these bones to make this conversion make sense with the data I have here, but have come up short. I know I want to rotate these values around the Y axis, but don't actually want the Y value in the euler angle to change. I am aware I could just reorient the root bone around the Y axis and the problem would be solved, but I want to have no rotation in the Y axis. I am "fixing" some older animations that have unnecessary rotation values in them.
var localBoneRotation = new Quaternion(keysX[j].value, keysY[j].value, keysZ[j].value, keysW[j].value).eulerAngles;
var reorientedForward = Quaternion.AngleAxis(rotation, Vector3.up) * Vector3.forward;
localBoneRotation.x *= reorientedForward.x;
localBoneRotation.y *= reorientedForward.y;
localBoneRotation.z *= reorientedForward.z;
var finalRotation = Quaternion.Euler(localBoneRotation);
keysX[j].value = finalRotation.x;
keysY[j].value = finalRotation.y;
keysZ[j].value = finalRotation.z;
keysW[j].value = finalRotation.w;
I have also tried using a matrix and Vector3 but most of the time I end up with values in the Y. Perhaps I am going about this incorrectly. I just need to be able to specify an angle rotation and then have the input data match the final euler angles with each of these data points.

Rotate geometry around its local axis

I tried to rotate a geometry around its local axis, but haven't found a way to do so. I know that there is ST_Rotate (see https://postgis.net/docs/ST_Rotate.html) for 2D calculations and (among others) ST_RotateX (see https://postgis.net/docs/ST_RotateX.html), but these methods rotate a geometry around the origin. I also tried to abuse ST_Affine when I tried to change (what seems to be) the origin (namely 0/0/0):
SELECT ST_Affine(
ST_GeomFromText(ST_AsText(runway_area)),
1, 0, 0, 0,
cos(rotRadians), -sin(rotRadians), 0, sin(rotRadians), cos(rotRadians),
--- use the geometry's centroid instead of 0, 0, 0
ST_X(ST_GeomFromText(ST_AsText(runway_area))), ST_Y(ST_GeomFromText(ST_AsText(runway_area))), ST_Z(ST_GeomFromText(ST_AsText(runway_area)))
)
It didn't work out - all I got was something that was way away from the intended location. Do I miss a very fundamental method by PostGIS here to rotate a geometry around one of its local axis?
Take a closer look at ST_Rotate, and note that there are three argument signatures:
geometry ST_Rotate(geometry geomA, float rotRadians);
geometry ST_Rotate(geometry geomA, float rotRadians, float x0, float y0);
geometry ST_Rotate(geometry geomA, float rotRadians, geometry pointOrigin);
The x0 and y0 or pointOrigin arguments for the last two signatures do what your questions asks: they allow the rotation to pivot around a custom defined coordinate.
And an example from the docs show how to rotate a geometry 60 degrees clockwise around the centroid:
SELECT ST_AsEWKT(ST_Rotate(geom, radians(-60.0), ST_Centroid(geom)))
FROM (SELECT 'LINESTRING (50 160, 50 50, 100 50)'::geometry AS geom) AS foo;
st_asewkt
--------------------------------------------------------------
LINESTRING(116.4225 130.6721,21.1597 75.6721,46.1597 32.3708)
(1 row)
You could combine ST_Rotate with ST_Centroid, example:
ST_Rotate(ST_GeomFromText(ST_AsText(runway_area)), -pi()/3, ST_Centroid(ST_GeomFromText(ST_AsText(runway_area)))
The last three arguments to ST_Affine do not represent the origin, but the global "shift" in the affine transformation. The documentation for ST_RotateX shows how to use this function to generate a rotation around the x-axis. All these parameters are zero since it's a rotation without translation.
If you want to employ a general axis, you would need to construct the corresponding rotation matrix and substitute its elements for the arguments a,b,c,d,e,f,g,h,i of ST_Affine and set xoff, yoff, zoff to zero.

Dome rotation on arbitrary axis?

Imagine a dome with its centre in the +z direction. What I want to do is to move that dome's centre to a different axis (e.g. 20 degrees x axis, 20 degrees y axis, 20 degrees z axis). How can I do that ? Any hint/tip helps.
Add more info:
I've been dabbling with rotation matrices in wiki for a while. The problem is, it is not a commutative operation. RxRyRz is not same as RzRyRx. So based on the way I multiple it I get a different final results. For example, I want my final projection to have 20 degrees from the original X axis, 20 degrees from original Y axis and 20 degrees from original Z axis. Based on the matrix, giving alpha, beta, gamma values 20 (or its corresponding radian) does NOT result the intended rotation. Am I missing something? Is there a matrix that I can just put the intended angles and get it at the end ?
Using a rotation matrix is an easy way to rotate a collection of (x,y,z) points. You can calculate a rotation matrix for your case using the equations in the general rotation section. Note that figuring out the angle values to plug into those equations can be tricky. Think of it as rotating about one axis at a time and remember that the order of your rotations (order of multiplications) does matter.
An alternative to the general rotation equations is to calculate a rotation matrix from axis and angle. It may be easier for you to define correct parameters with this method.
Update: After perusing Wikipedia, I found a simple way to calculate rotation axis and angle between two vectors. Just fill in your starting and ending vectors for a and b here:
a = [0.0 0.0 1.0];
b = [0.5 0.5 0.0];
vectorMag = #(x) sqrt(sum(x.^2));
rotAngle = acos(dot(a,b) / (vectorMag(a) * vectorMag(b)))
rotAxis = cross(a,b)
rotAxis =
-0.5 0.5 0
rotAngle =
1.5708

Rotate an object around its center point in unity 3d

How to rotate a 3d game object around its center point in unity 3d.
Just use bounds.center from the renderer
Vector3 position = myGameObject.GetComponent<Renderer>().bounds.center;
myGameObject.transform.RotateAround(position, rotationVector, degreesPerSecond * Time.deltaTime);
where rotationVector is your rotation axis (Vector3)
The two common ways to rotate an object are
The rotate attribute in the transform. Using this one you can set the exact coordinates for the target object rotation. However, you'll have to manage the smoothness by yourself if you want to make animations and the values are given through Quaternion type. I recommend to use the static method Quaternion.Euler so you can pass values in a X, Y, Z. The example below set the object to turn 90 degrees clockwise in the Y axis:
transform.rotation = Quaternion.Euler (0, 90, 0);
The second approach uses the Rotation method in the same transform attribute. This method allow you to pass the amount of degrees in which object will rotate and already accept X, Y and Z coordinates instead Quaternion.
The example below rotate the object 1 degree clockwise in the Y axis:
transform.Rotate (0, 1, 0);
To best understand the difference between both methods, if you use the first one in an Update method you'll see the object static rotated 90 degrees in the Y axis. The second example used in an Update will make the object spin clockwise in the Y axis (too fast).
use
Transform.rotation
look here for Examples/Documentation :
Unity Script Reference

Draw Camera Range with Postgis

i am working on some camera data. I have some points which consist of azimuth, angle, distance, and of course coordinate field attributes. In postgresql postgis I want to draw shapes like this with functions.
how can i draw this pink range shape?
at first should i draw 360 degree circle then extracting out of my shape... i dont know how?
I would create a circle around the point(x,y) with your radius distance, then use the info below to create a triangle that has a larger height than the radius.
Then using those two polygons do an ST_Intersection between the two geometries.
NOTE: This method only works if the angle is less than 180 degrees.
Note, that if you extend the outer edges and meet it with a 90 degree angle from the midpoint of your arc, you have a an angle, and an adjacent side. Now you can SOH CAH TOA!
Get Points B and C
Let point A = (x,y)
To get the top point:
point B = (x + radius, y + (r * tan(angle)))
to get the bottom point:
point C = (x + radius, y - (r * tan(angle)))
Rotate your triangle to you azimouth
Now that you have the triangle, you need to rotate it to your azimuth, with a pivot point of A. This means you need point A at the origin when you do the rotation. The rotation is the trickiest part. Its used in computer graphics all the time. (Actually, if you know OpenGL you could get it to do the rotation for you.)
NOTE: This method rotates counter-clockwise through an angle (theta) around the origin. You might have to adjust your azimuth accordingly.
First step: translate your triangle so that A (your original x,y) is at 0,0. Whatever you added/subtracted to x and y, do the same for the other two points.
(You need to translate it because you need point A to be at the origin)
Second step: Then rotate points B and C using a rotation matrix. More info here, but I'll give you the formula:
Your new point is (x', y')
Do this for points B and C.
Third step: Translate them back to the original place by adding or subtracting. If you subtracted x last time, add it this time.
Finally, use points {A,B,C} to create a triangle.
And then do a ST_Intersection(geom_circle,geom_triangle);
Because this takes a lot of calculations, it would be best to write a program that does all these calculations and then populates a table.
PostGIS supports curves, so one way to achieve this that might require less math on your behalf would be to do something like:
SELECT ST_GeomFromText('COMPOUNDCURVE((0 0, 0 10), CIRCULARSTRING(0 10, 7.071 7.071, 10 0), (10 0, 0 0))')
This describes a sector with an origin at 0,0, a radius of 10 degrees (geographic coordinates), and an opening angle of 45°.
Wrapping that with additional functions to convert it from a true curve into a LINESTRING, reduce the coordinate precision, and to transform it into WKT:
SELECT ST_AsText(ST_SnapToGrid(ST_CurveToLine(ST_GeomFromText('COMPOUNDCURVE((0 0, 0 10), CIRCULARSTRING(0 10, 7.071 7.071, 10 0), (10 0, 0 0))')), 0.01))
Gives:
This requires a few pieces of pre-computed information (the position of the centre, and the two adjacent vertices, and one other point on the edge of the segment) but it has the distinct advantage of actually producing a truly curved geometry. It also works with segments with opening angles greater than 180°.
A tip: the 7.071 x and y positions used in the example can be computed like this:
x = {radius} cos {angle} = 10 cos 45 ≈ 7.0171
y = {radius} sin {angle} = 10 sin 45 ≈ 7.0171
Corner cases: at the antimeridian, and at the poles.