Query datevalue of a inner Array element - mongodb

Need help with some MongoDB query:
The document I have is below and I am trying to search based on 2 conditions
The meta.tags.code = "ABC"
Its LastSyncDateTime should
meta.extension.value == "" (OR)
the meta.extension.value is less than meta.lastUpdated
Data :
{
"meta" : {
"extension" : [
{
"url" : "LastSyncDateTime",
"value" : "20190206-00:49:25.694"
},
{
"url" : "RetryCount",
"value" : "0"
}
],
"lastUpdate" : "20190207-01:21:41.095",
"tags" : [
{
"code" : "ABC",
"system" : "type"
},
{
"code" : "XYZ",
"system" : "SourceSystem"
}
]
}
}
Query:
db.proc_patients_service.find({
"meta.tags.code": "ABC",
$or: [{
"meta.extension.value": ""
}, {
$expr: { "$lt": [{ "mgfunc": "ISODate", "params": [{ "$arrayElemAt": ["$meta.extension.value", 0] }] }, { "mgfunc": "ISODate", "params": ["$meta.lastUpdate"] }] }
}]
})
But it is only fetching ABC Patients whose LastSyncDateTime is empty and ignores the other condition.

Using MongoDB Aggregation, I have converted your string to date with operator $dateFromString and then compare the value as per your criteria.
db.proc_patients_service.aggregate([
{ $match: { "meta.tags.code": "ABC", } },
{ $unwind: "$meta.extension" },
{
$project: {
'meta.tags': '$meta.tags',
'meta.lastUpdate': { '$dateFromString': { 'dateString': '$meta.lastUpdate', format: "%Y%m%d-%H:%M:%S.%L" } },
'meta.extension.url': '$meta.extension.url',
'meta.extension.value': {
$cond: {
if: { $ne: ["$meta.extension.value", "0"] }, then: { '$dateFromString': { 'dateString': '$meta.extension.value', format: "%Y%m%d-%H:%M:%S.%L" } }, else: 0
}
}
}
},
{
$match: {
$or: [
{ "meta.extension.value": 0 },
{ $expr: { $lt: ["$meta.extension.value", "$meta.lastUpdate"] } }
]
}
},
{
$group: { _id: '_id', 'extension': { $push: '$meta.extension' }, "lastUpdate": { $first: '$meta.lastUpdate' }, 'tags': { $first: '$meta.tags' } }
},
{
$project: { meta: { 'extension': '$extension', lastUpdate: '$lastUpdate', 'tags': '$tags' } }
}
])

Related

MongoDB Query based on value in array and return a single field

I have a collection called countries:
{
"_id" : "123456",
"enabled" : true,
"entity" : {
"name" : [
{
"locale" : "en",
"value" : "Lithuania"
},
{
"locale" : "de",
"value" : "Litauen"
}
]
}
}
I like to return only the ObjectId and the value when the locale is "en".
{"_id":"123456", "value":"Lithuania"}
Ideally renaming value to country for:
{"_id":"123456", "country":"Lithuania"}
Using a projection like:
db.countries.aggregate([
{$project:
{country: {$arrayElemAt:["$entity.name",0]}}
}
])
returns almost the desired results:
{"_id" : "1234565", "country" : { "locale" : "en", "value" : "Lithuania" } }
This this one:
db.collection.aggregate([
{
$set: {
country: {
$filter: {
input: "$entity.name",
cond: { $eq: [ "$this.locale", "en" ] }
}
}
}
},
{ $project: { country: { $first: "$country.value" } } },
])
See Mongo playground
You can try,
$reduce to iterate loop of entity.name array, $cond check locale is "en" then return value
db.collection.aggregate([
{
$project: {
country: {
$reduce: {
input: "$entity.name",
initialValue: "",
in: {
$cond: [
{ $eq: ["$$this.locale", "en"] },
"$$this.value",
"$$value"
]
}
}
}
}
}
])
Playground
I should have specified the MongoDB Version. Server is running 3.6.20. For that the following solution works:
db.countries.aggregate([
{
$addFields: {
country: {
$filter: {
input: "$entity.name",
cond: { $eq: [ "$$this.locale", "en" ] }
}
}
}
},
{ $project: { country: { $arrayElemAt: [["$country.value"],0] } } },
])

MongoDB returns only the specified query

db.customerOrder.insert({
firstName: "Andrew",
lastName: "Lee",
DOB: ISODate("1974-10-28T00:00:00Z"),
phone: "+1 (959) 567-3312",
email: "mark#gmail.com",
address: {
street: "Cornish Street, Victoria",
houseNumber: "68",
postalCode: "3024",
country: "Australia",
},
language: ["English", "Mandarin"],
balance: 0,
orders: [
{
orderNumber: "ord003",
orderDate: ISODate("2020-01-10T00:00:00Z"),
staffNumber: "stf789"
}
]
});
Given the document above, and other documents which contain other orders and order number, how do i specify an aggregation so that it will only list all orderNumbers that's handled by a staffNumber x?
Example, orderNumber ord004 and ord005 is handled by staffNumber stf890
I tried doing
db.customerOrder.aggregate([ {"$match":{"orders.staffNumber":"stf890"}}, {"$project":{"orders.orderNumber":1, "_id":0}} ])
but the result was
{
"orders" : [
{
"orderNumber" : "ord003"
},
{
"orderNumber" : "ord003"
},
{
"orderNumber" : "ord005"
}
]
}
{
"orders" : [
{
"orderNumber" : "ord001"
},
{
"orderNumber" : "ord005"
}
]
}
{
"orders" : [
{
"orderNumber" : "ord003"
},
{
"orderNumber" : "ord004"
}
]
}
I expect the result to output only ord004 and ord005
How do i achieve this?
Thank you for your help
Try this! your query is almost correct but you're missing the case of matching orderNumber.
db.customerOrder.aggregate([
{
"$match":{
"orders.staffNumber":"stf890"
}
},
{
$unwind:{
"path":"$orders"
}
},
{
"$match":{
"orders.orderNumber":{$in:["ord004","ord005"]}
}
},
{
"$project":{
"orders.orderNumber":1,
"_id":0
}
}
])
If you don't care about the structure you can just $unwind and then match. otherwise you need to use something like $filter
Option 1:
db.customerOrder.aggregate([
{
"$match": {
"orders.staffNumber": "stf890"
}
},
{
"$unwind": "$orders"
},
{
"$match": {
"orders.staffNumber": "stf890"
}
},
{
"$project": {"orders.orderNumber": 1, "_id": 0}
}])
Option 2:
db.customerOrder.aggregate([
{
"$match": {
"orders.staffNumber": "stf890"
}
},
{
$project: {
orders: {
$filter: {
input: "$orders",
as: "order",
cond: {
$eq: ["$$order.staffNumber", "stf890"]
}
}
}
}
},
{
"$project": {
"orders.orderNumber": 1,
"_id": 0
}
}
])

How to avoid possible null error scenarios in mongodb Aggregate

I've set up a fairly long mongo aggregate query to join several mongo collections together and shape up them into output of set of string fields. The query works fine as long as all the required values (ie : ids) exists but it breaks when it encounters null or empty values when doing the $lookup.
Following is the patientFile collection thats being queried :
{
"no" : "2020921008981",
"startDateTime" : ISODate("2020-04-01T05:19:02.263+0000")
"saleId" : "5e8424464475140d19c6941b",
"patientId" : "5e8424464475140d1955941b"
}
sale collection :
{
"_id" : ObjectId("5e8424464475140d19c6941b"),
"invoices" : [
{
"billNumber" : "2020921053467",
"type" : "CREDIT",
"insurancePlanId" : "160"
},
{
"billNumber" : "2020921053469",
"type" : "DEBIT",
"insurancePlanId" : "161"
}
],
"status" : "COMPLETE"
}
insurance collection :
{
"_id" : ObjectId("5b55aca20550de00210a6d25"),
"name" : "HIJKL"
"plans" : [
{
"_id" : "160",
"name" : "UVWZ",
},
{
"_id" : "161",
"name" : "LMNO",
}
]
}
patient collection :
{
"_id" : ObjectId("5b55cc5c0550de00217ae0f3"),
"name" : "TAN NAI",
"userId" : {
"number" : "787333128H"
}
}
Heres the aggregate query :
db.getCollection("patientFile").aggregate([
{ $match: { "startDateTime": { $gte: ISODate("2020-01-01T00:00:00.000Z"),
$lt: ISODate("2020-05-01T00:00:00.000Z") } } },
{
$lookup:
{
from: "patient",
let: { pid: "$patientId" },
pipeline: [
{
$match: {
$expr: {
$eq: ["$_id", { $toObjectId: "$$pid" }]
}
}
},
{ "$project": { "name": 1, "userId.number": 1, "_id": 0 } }
],
as: "patient"
}
},
{
$lookup:
{
from: "sale",
let: { sid: "$saleId" },
pipeline: [
{
$match: {
$expr: {
$eq: ["$_id", { $toObjectId: "$$sid" }]
}
}
}
],
as: "sale"
}
},
{ $unwind: "$sale" },
{ $unwind: "$patient" },
{
$lookup: {
from: "insurance",
let: { pid: {$ifNull:["$sale.bill.insurancePlanId", [] ]} },
pipeline: [
{
$unwind: "$plans"
},
{
$match: { $expr: { $in: ["$plans._id", "$$pid"] } }
},
{
$project: { _id: 0, name: 1 }
}
],
as: "insurances"
}
},
{ $match: { "insurances.name": { $exists: true, $ne: null } } },
{
$addFields: {
invoice: {
$reduce: {
input: {$ifNull:["$sale.bill.billNumber", [] ]},
initialValue: "",
in: {
$cond: [{ "$eq": ["$$value", ""] }, "$$this", { $concat: ["$$value", "\n", "$$this"] }]
}
}
},
insurances: {
$reduce: {
input: {$ifNull:["$insurances.name", [] ]},
initialValue: "",
in: {
$cond: [{ "$eq": ["$$value", ""] }, "$$this", { $concat: ["$$value", "\n", "$$this"] }]
}
}
}
}
},
{
"$project": {
"startDateTime": 1,
"patientName": "$patient.name",
"invoice": 1,
"insurances": 1
}
}
],
{ allowDiskUse: true }
)
Error :
Unable to execute the selected commands
Mongo Server error (MongoCommandException): Command failed with error 241 (ConversionFailure): 'Failed to parse objectId '' in $convert with no onError value: Invalid string length for parsing to OID, expected 24 but found 0' on server localhost:27017.
The full response is:
{
"ok" : 0.0,
"errmsg" : "Failed to parse objectId '' in $convert with no onError value: Invalid string length for parsing to OID, expected 24 but found 0",
"code" : NumberInt(241),
"codeName" : "ConversionFailure"
}
As a solution i have found, used $ifNull but this error keeps coming. What would be the best step to take for this scenario?
I see a couple of ways:
Instead of converting the string value to an ObjectId to test, convert the ObjectId to a string
$match: {
$expr: {
$eq: [{$toString: "$_id"}, "$$pid" ]
}
}
Instead of the $toObjectId helper, use $convert and provide onError and/or onNull values:
$match: {
$expr: {
$eq: ["$_id", { $convert: {
input: "$$pid",
to: "objectId",
onError: {error:true},
onNull: {isnull:true}
}}]
}
}

Aggregate and project with multiples conditions

I have a collection myCollection with array of members :
{
name : String,
members: [{status : Number, memberId : {type: Schema.Types.ObjectId, ref: 'members'}]
}
and i have this data
"_id" : ObjectId("5e83791eb49ab07a48e0282b")
"members" : [
{
"status" : 1,
"_id" : ObjectId("5e83791eb49ab07a48e0282c"),
"memberId" : ObjectId("5e7dbf5b257e6b18a62f2da9")
},
{
"status" : 2,
"_id" : ObjectId("5e837944b49ab07a48e0282d"),
"memberId" : ObjectId("5e7de2dbe027f43adf678db8")
}
],
I want to check by aggregate query if member 5e7dbf5b257e6b18a62f2da9 exists with status 1 but it didn't return true
db.getCollection('myCollection').aggregate([
{$match: {_id: ObjectId("5e83791eb49ab07a48e0282b")}},
{
$project: {
isMember: {
$cond: [
{ $and: [ {$in: [ObjectId("5e7dbf5b257e6b18a62f2da9"), '$members.memberId']}, {$eq: ['$members.status', 1]} ] },
// if
true, // then
false // else
]
}
}
}
])
Thank you for your responses.
If you want to get just true/false you can shortcut like this:
db.collection.aggregate([
{ $match: { _id: ObjectId("5e83791eb49ab07a48e0282b") } },
{
$project: {
isMember: {
$map: {
input: "$members",
in: {
$and: [
{ $eq: [ObjectId("5e7dbf5b257e6b18a62f2da9"), '$$this.memberId'] },
{ $eq: [1, '$$this.status'] }
]
}
}
}
}
},
{ $set: { isMember: { $anyElementTrue: "$isMember" } } }
])
A different style would be this:
db.collection.aggregate([
{ $match: { _id: ObjectId("5e83791eb49ab07a48e0282b") } },
{
$project: {
isMember: {
$map: {
input: "$members",
in: {
$eq: [
{ memberId: ("5e7dbf5b257e6b18a62f2da9"), status: 1 },
{ memberId: "$$this.memberId", status: "$$this.status" }
]
}
}
}
}
},
{ $set: { isMember: { $anyElementTrue: "$isMember" } } }
])

$unwind, $aggregation manipulation in mongodb nodejs

please check this query
db.billsummaryofthedays.aggregate([
{
'$match': {
'userId': ObjectId('5e43de778b57693cd46859eb'),
'adminId': ObjectId('5e43e5cdc11f750864f46820'),
'date': ISODate("2020-02-11T16:30:00Z"),
}
},
{
$lookup:
{
from: "paymentreceivables",
let: { userId: '$userId', adminId: '$adminId' },
pipeline: [
{
$match:
{
paymentReceivedOnDate:ISODate("2020-02-11T16:30:00Z"),
$expr:
{
$and:
[
{ $eq: ["$userId", "$$userId"] },
{ $eq: ["$adminId", "$$adminId"] }
]
}
}
},
{ $project: { amount: 1, _id: 0 } }
],
as: "totalPayment"
}
}, {'$unwind':'$totalPayment'},
{ $group:
{ _id:
{ date: '$date',
userId: '$userId',
adminId: '$adminId' },
totalBill:
{
$sum: '$billOfTheDay'
},
totalPayment:
{
$sum: '$totalPayment.amount'
}
}
},
}
}])
this is the result i am getting in the shell
{
"_id" : {
"date" : ISODate("2020-02-11T18:30:00Z"),
"userId" : ObjectId("5e43de778b57693cd46859eb"),
"adminId" : ObjectId("5e43e5cdc11f750864f46820")
},
"totalBill" : 1595.6799999999998,
"totalPayments" : 100
}
now this is not what i expected,i assume due to {'$unwind':'$totalPayment'} it takes out all the values from the array and because of which every document is getting counted 2 times. When i remove {'$unwind':'$totalPayment'} then totalBill sum turns out to be correct but totalPayment is 0.
I have tried several other ways but not able to achieve the desired result
Below are my collections:
// collection:billsummaryofthedays//
{
"_id" : ObjectId("5e54f784f4032c1694535c0e"),
"userId" : ObjectId("5e43de778b57693cd46859eb"),
"adminId" : ObjectId("5e43e5cdc11f750864f46820"),
"date" : ISODate("2020-02-11T16:30:00Z"),
"UID":"acex01"
"billOfTheDay" : 468,
}
{
"_id" : ObjectId("5e54f784f4032c1694535c0f"),
"UID":"bdex02"
"userId" : ObjectId("5e43de778b57693cd46859eb"),
"adminId" : ObjectId("5e43e5cdc11f750864f46820"),
"date" : ISODate("2020-02-11T16:30:00Z"),
"billOfTheDay" : 329.84,
}
// collection:paymentreceivables//
{
"_id" : ObjectId("5e43e73169fe1e3fc07eb7c5"),
"paymentReceivedOnDate" : ISODate("2020-02-11T16:30:00Z"),
"adminId" : ObjectId("5e43e5cdc11f750864f46820"),
"userId" : ObjectId("5e43de778b57693cd46859eb"),
"amount" : 20,
}
{
"_id" : ObjectId("5e43e73b69fe1e3fc07eb7c6"),
"paymentReceivedOnDate" : ISODate("2020-02-11T16:30:00Z"),
"adminId" : ObjectId("5e43e5cdc11f750864f46820"),
"userId" : ObjectId("5e43de778b57693cd46859eb"),
"amount" : 30,
}
desired result should be totalBill:797.83 i.e[468+329.84,] and totalPayment:50 i.e[30+20,] but i am getting double the expected result and even if i am able to calculate one of the value correctly the other one result 0.How to tackle this??
Since you've multiple documents with same data in billsummaryofthedays collection then you can group first & then do $lookup - that way JOIN between two collections would be 1-Vs-many rather than many-Vs-many as like it's currently written, So you can try below query for desired o/p & performance gains :
db.billsummaryofthedays.aggregate([
{
"$match": {
"userId": ObjectId("5e43de778b57693cd46859eb"),
"adminId": ObjectId("5e43e5cdc11f750864f46820"),
"date": ISODate("2020-02-11T16:30:00Z"),
}
},
{
$group: {
_id: {
date: "$date",
userId: "$userId",
adminId: "$adminId"
},
totalBill: {
$sum: "$billOfTheDay"
}
}
},
{
$lookup: {
from: "paymentreceivables",
let: {
userId: "$_id.userId",
adminId: "$_id.adminId"
},
pipeline: [
{
$match: {
paymentReceivedOnDate: ISODate("2020-02-11T16:30:00Z"),
$expr: {
$and: [
{
$eq: [
"$userId",
"$$userId"
]
},
{
$eq: [
"$adminId",
"$$adminId"
]
}
]
}
}
},
{
$project: {
amount: 1,
_id: 0
}
}
],
as: "totalPayment"
}
},
{
$addFields: {
totalPayment: {
$reduce: {
input: "$totalPayment",
initialValue: 0,
in: {
$add: [
"$$value",
"$$this.amount"
]
}
}
}
}
}
])
Test : MongoDB-Playground