getting a matrix into a sym variable - matlab

I'm trying to fit a function to my experimental data. The function is actually a summation of terms. I tried the symsum method to build my function.
z is a 155x1 matrix, Q is the value returned from lsqcurvefit, zo is a user defined input variable and k is the index of summation from 0 to 11.
syms z Q k r
Function=symsum( ((-Q)^k)*(1/(k+1)^1.5)/(1+z^2/r^2)^k,k)
I can't find method to use a matrix into sym. suggest me any alternate method.

Related

How can I derive symbolic function in MATLAB in terms of another symbolic function?

gr = 9.81; %gravity
syms phi(t) m l
theta=1/3*m*l^2;
phidot=diff(phi,t);
U=m*gr*l/2*cos(phi);
T=1/2*theta*phidot^2+(1/2*phidot*l)^2*m;
L=T-U;
frst=diff(L,phidot);
The code is shown above. As you can see that phi(t) is symbolic time dependent function and phidot is derivation of it(also time dependent). L is obtained using these symbolic functions.
So, The problem is I can't derive L in terms of phidot in Matlab. The error occurs as following:
Error using sym/diff (line 26)
All arguments, except for the first one, must not be **symbolic** functions.
Error in pndlm (line 11)
frst=diff(L,phidot)
Is there any way to derive symbolic function in terms of another symbolic function? If not, Can you suggest me another alternative for avoiding this kind of error?
Possible duplicate of this
If you want to differentiate L with respect to q, q must be a
variable. You can use subs to replace it with a function and calculate
d/dt(dL/dq') later.
Remember those derivatives are partial. Hence just include explicitly the variable and obtain the expression.
% Variables
syms q qt m l g
theta=1/3*m*l^2;
% Lagrangian
U=m*g*l/2*cos(q);
T=1/2*theta*qt^2+(1/2*qt*l)^2*m;
L=T-U;
% Partial Derivatives
dLdq=diff(L,q)
dLdqt=diff(L,qt)
syms qf(t)
% Time Derivatives
qtf(t)=diff(qf,t)
dLdqf=subs(dLdqt,qt,qtf)
% Solution
m=1;l=1;g=9.81;
dsolve(diff(dLdqf,t)-dLdqf==0)

Plotting the sum of series

I use this code and i don't know what it needs to work for my problem:
syms x k t
for t=0:10
num=((-1)^k)/k
t1=sin(8*3.1415*k*t)
S1=symsum((num*t1),k,1,2);
x=0.5-((1/3.1415)*S1);
end
Plot(x)
On the x axis I show time and on the y axis I show the function over four periods.
When I try to run the code I get the following error:
Undefined function 'symsum' for input arguments of type 'double'.
Maybe I can't use symsum with my argument type, but is there another function I can use? Sum also didn't work:
Error using sum Dimension argument must be a positive integer scalar within indexing range.
Since you want to plot x(t), you need to use plot(t,x) where t and x are vectors.
Instead of using for t=0:10, just let t=0:10 and calculate the corresponding x.
Also, the symbolic variable is just k.
syms k
t=0:10;
num=((-1)^k)/k;
t1=sin(8*3.1415*k*t);
S1=symsum((num*t1),k,1,2);
x=0.5-((1/3.1415)*S1);
plot(t,x)
It is noted that if you let t=0:10, then the sin(8*k*pi*t) will always be 0 since t is a vector of the integer from 0 to 10. The result of x(t) will be 5:
Output when t=0:10:
As you can see, the value of x(t) is very close to each other. Theoretically, they should all be 5. But there is some numerical approximation which leads to the small error.
You probably want non-integer t. Here is a output when t=0:0.1:10

How can I use NxM matrix to be my initial condition in `pdepe`

I solved a PDE using Matlab solver, pdepe. The initial condition is the solution of an ODE, which I solved in a different m.file. Now, I have the ODE solution in a matrix form of size NxM. How I can use that to be my IC in pdepe? Is that even possible? When I use for loop, pdepe takes only the last iteration to be the initial condition. Any help is appreciated.
Per the pdepe documentation, the initial condition function for the solver has the syntax:
u = icFun(x);
where the initial value of the PDE at a specified value of x is returned in the column vector u.
So the only time an initial condition will be a N x M matrix is when the PDE is a system of N unknowns with M spatial mesh points.
Therefore, an N x M matrix could be used to populate the initial condition, but there would need to be some mapping that associates a given column with a specific value of x. For instance, in the main function that calls pdepe, there could be
% icData is the NxM matrix of data
% xMesh is an 1xM row vector that has the spatial value for each column of icData
icFun = #(x) icData(:,x==xMesh);
The only shortcoming of this approach is that the mesh of the initial condition, and therefore the pdepe solution, is constrained by the initial data. This can be overcome by using an interpolation scheme like:
% icData is the NxM matrix of data
% xMesh is an 1xM row vector that has the spatial value for each column of icData
icFun = #(x) interp1(xMesh,icData',x,'pchip')';
where the transposes are present to conform to the interpretation of the data by interp1.
it is easier for u to use 'method of line' style to define different conditions on each mesh rather than using pdepe
MOL is also more flexible to use in different situation like 3D problem
just saying :))
My experience is that the function defining the initial conditions must return a column vector, i.e. Nx1 matrix if you have N equations. Even if your xmesh is an array of M numbers, the matrix corresponding to the initial condition is still Nx1. You can still return a spatially varying initial condition, and my solution was the following.
I defined an anonymous function, pdeic, which was passed as an argument to pdepe:
pdeic=#(x) pdeic2(x,p1,p2,p3);
And I also defined pdeic2, which always returns a 3x1 column vector, but depending on x, the value is different:
function u0=pdeic2(x,extrap1,extrap2,extrap3)
if x==extrap3
u0=[extrap1;0;extrap2];
else
u0=[extrap1;0;0];
end
So going back to your original question, my guess would be that you have to pass the solution of your ODE to what is named 'pdeic2' in my example, and depending on X, return a column vector.

Function to find roots using Newtons Method with jacobian and transpose

Given f=[f1,f2]^t
and the jacobian matrix for it
How can i make a function using Newtons method that takes initial guess of x1,x2 with a tolerance of E and a max iterations of k to find the roots?
roots are places where f1 and f2 are both zeros. so you can use a cost function of the form f1^2 + f2^2, and use fmincond/fminunc/fminsearch to find answers

Matlab: Error using ==> mpower

I'm trying to use fsolve in matlab to solve a system of nonlinear equations numerically. Here is a test sample of my program, k1 and R are parameters and x0 is the start point.
function y=f(k1, R, x0)
pair=fsolve(#system,x0);
y=pair(1);
function r=system(v)
int1=#(x) exp(k1*x);
int2=#(x) exp(k1*x^2)/(x^4);
r(1)=exp(v(1))*quadl(int1,0,v(1));
r(2)=exp(k1*v(2))*quadl(int2,v(1),20)*k1*R;
end
end
The strange thing is when I run this program, matlab keeps telling me that I should use .^ instead of ^ in int2=#(x) exp(k1*x^2)/(x^4). I am confused because the x in that function handle is supposed to be a scalar when it is used by quadl. Why should I have to use .^ in this case?
Also I see that a lot of the examples provided in online documentations also use .^ even though they are clearly taking power of a scalar, as in here. Can anybody help explain why?
Thanks in advance.
in the function int2 you have used matrix power (^) where you should use element-wise power (.^). Also, you have used matrix right division (/) where you should use element-wise division (./). This is needed, since quadl (and friends) will evaluate the integrand int2 for a whole array of x's at a time for reasons of efficiency.
So, use this:
function y = f(k1, R, x0)
pair = fsolve(#system,x0);
y = pair(1);
function r = system(v)
int1 = #(x) exp(k1*x);
int2 = #(x) exp(k1*x.^2)./(x.^4);
r(1) = exp( v(1)) * quadl(int1,0,v(1));
r(2) = exp(k1*v(2)) * k1*R*quadl(int2,v(1),20);
end
end
Also, have a look at quadgk or integral (if you're on newer Matlab).
By the way, I assume your real functions int1 and int2 are different functions? Because these functions are of course trivial to solve analytically...
Internally MATLAB will evaluate the function fun for necessary values of x, which is more than one and x is a vector. a and b are only used to describe the limits of integration. From the documentation
fun is a function handle. It accepts a vector x and returns a vector y, the function fun evaluated at each element of x. Limits a and b must be finite.
Hence, you must use .^ to operate on individual elements of vector x.