How to handle answer of long long integers in swift [duplicate] - swift

This question already has answers here:
Modulus power of big numbers
(4 answers)
Closed 4 years ago.
I have to calculate power of two long integers in swift.
Swift gives an error of NaN (not a number) and fails to answer.
e.g
pow(2907,1177)
The main process id to calculate power and get remainder (a^b % n) where a= 2907, b= 1177, n= 1211
Any guidelines how to solve it?

You will have to use either 1. an external framework or 2. do it by yourself.
1. External Framework:
I think you can try : https://github.com/mkrd/Swift-Big-Integer
let a = BInt(2907)
let b = 1177
let n = BInt(1211)
let result = (a ** b) % n
print(result) // prints 331
Note: Cocoapods import failed so I just imported this file for it to work: https://github.com/mkrd/Swift-Big-Integer/tree/master/Sources
2. DIY:
Using the answer of Modulus power of big numbers
func powerMod(base: Int, exponent: Int, modulus: Int) -> Int {
guard base > 0 && exponent >= 0 && modulus > 0
else { return -1 }
var base = base
var exponent = exponent
var result = 1
while exponent > 0 {
if exponent % 2 == 1 {
result = (result * base) % modulus
}
base = (base * base) % modulus
exponent = exponent / 2
}
return result
}
let result = powerMod(base: 2907, exponent: 1177, modulus: 1211)
print(result) // prints 331
3. Bonus: Using the same as 2. but with custom ternary operator thanks to http://natecook.com/blog/2014/10/ternary-operators-in-swift/
precedencegroup ModularityLeft {
higherThan: ComparisonPrecedence
lowerThan: AdditionPrecedence
}
precedencegroup ModularityRight {
higherThan: ModularityLeft
lowerThan: AdditionPrecedence
}
infix operator *%* : ModularityLeft
infix operator %*% : ModularityRight
func %*%(exponent: Int, modulus: Int) -> (Int) -> Int {
return { base in
guard base > 0 && exponent >= 0 && modulus > 0
else { return -1 }
var base = base
var exponent = exponent
var result = 1
while exponent > 0 {
if exponent % 2 == 1 {
result = (result * base) % modulus
}
base = (base * base) % modulus
exponent = exponent / 2
}
return result
}
}
func *%*(lhs: Int, rhs: (Int) -> Int) -> Int {
return rhs(lhs)
}
And then you can just call:
let result = 2907 *%* 1177 %*% 1211
Additional information:
Just for information in binary 2907^1177 takes 13542bits...
https://www.wolframalpha.com/input/?i=2907%5E1177+in+binary
It takes a 4kb string to store it in base 10 : https://www.wolframalpha.com/input/?i=2907%5E1177

Related

How can I write the code of Bessel function with 10 term in swift?

I hope you guys can check. when I use 5 as x it should be showing me -0.17749282815107623 but it returns -0.2792375. I couldn't where I have been doing the mistake.
var evenNumbers = [Int]()
for i in 2...10 {
if i % 2 == 0 {
evenNumbers.append(i)
}
}
func power(val: Float, power: Int)->Float{
var c:Float = 1
for i in 1...power {
c *= val
}
return c
}
func bessel(x: Float)->Float{
var j0:Float = 0
var counter = 1
var lastDetermVal:Float = 1
for eNumber in evenNumbers {
print(lastDetermVal)
if counter == 1 {
lastDetermVal *= power(val: Float(eNumber), power: 2)
j0 += (power(val: x, power: eNumber))/lastDetermVal
counter = -1
}else if counter == -1{
lastDetermVal *= power(val: Float(eNumber), power: 2)
j0 -= (power(val: x, power: eNumber))/lastDetermVal
counter = 1
}
}
return 1-j0
}
bessel(x: 5)
Function 1:
Your mistake seems to be that you didn't have enough even numbers.
var evenNumbers = [Int]()
for i in 2...10 {
if i % 2 == 0 {
evenNumbers.append(i)
}
}
After the above is run, evenNumbers will be populated with [2,4,6,8,10]. But to evaluate 10 terms, you need even numbers up to 18 or 20, depending on whether you count 1 as a "term". Therefore, you should loop up to 18 or 20:
var evenNumbers = [Int]()
for i in 2...18 { // I think the 1 at the beginning should count as a "term"
if i % 2 == 0 {
evenNumbers.append(i)
}
}
Alternatively, you can create this array like this:
let evenNumbers = (1..<10).map { $0 * 2 }
This means "for each number between 1 (inclusive) and 10 (exclusive), multiply each by 2".
Now your solution will give you an answer of -0.1776034.
Here's my (rather slow) solution:
func productOfFirstNEvenNumbers(_ n: Int) -> Float {
if n == 0 {
return 1
}
let firstNEvenNumbers = (1...n).map { Float($0) * 2.0 }
// ".reduce(1.0, *)" means "multiply everything"
return firstNEvenNumbers.reduce(1.0, *)
}
func nthTerm(_ n: Int, x: Float) -> Float {
let numerator = pow(x, Float(n) * 2)
// yes, this does recalculate the product of even numbers every time...
let product = productOfFirstNEvenNumbers(n)
let denominator = product * product
return numerator / (denominator) * pow(-1, Float(n))
}
func bessel10Terms(x: Float) -> Float {
// for each number n in the range 0..<10, get the nth term, add them together
(0..<10).map { nthTerm($0, x: x) }.reduce(0, +)
}
print(bessel10Terms(x: 5))
You code is a bit unreadable, however, I have written a simple solution so try to compare your intermediate results:
var terms: [Float] = []
let x: Float = 5
for index in 0 ..< 10 {
guard index > 0 else {
terms.append(1)
continue
}
// calculate only the multiplier for the previous term
// - (minus) to change the sign
// x * x to multiply nominator
// (Float(index * 2) * Float(index * 2) to multiply denominator
let termFactor = -(x * x) / (Float(index * 2) * Float(index * 2))
terms.append(terms[index - 1] * termFactor)
}
print(terms)
// sum the terms
let result = terms.reduce(0, +)
print(result)
One of the errors I see is the fact that you are actually calculating only 5 terms, not 10 (you iterate 1 to 10, but only even numbers).

How to print all the digits in a large number of 10 power 25 in swift?

I have been working on a hacker rank problem where I have to print a number which is a factorial of 25. Here is the code I used.
func extraLongFactorials(n: Int) -> Void {
let factorialNumber = factorial(number: n)
var arrayForStorage: [Int] = []
var loop = factorialNumber
while (loop > 0) {
let digit = loop.truncatingRemainder(dividingBy: 10)
arrayForStorage.append(Int(digit))
loop /= 10
}
arrayForStorage = arrayForStorage.reversed()
var returnString = ""
for element in arrayForStorage {
returnString = "\(returnString)\(element)"
}
print(returnString)
}
func factorial(number: Int) -> Double {
if number == 0 || number == 1 {
return 1
} else if number == 2 {
return 2
} else {
return Double(number) * factorial(number: number - 1)
}
}
But when I try to print the factorial number it just prints 0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000015511210043330982408266888 when it should print
15511210043330985984000000.
I think for a Double number truncatingRemainder(dividingBy: 10) method is not giving me the exact number of the remainder. Because when I tried to print the truncatingRemainder of 15511210043330985984000000 it is giving me as 8. Here is the code.
let number: Double = 15511210043330985984000000
print(number.truncatingRemainder(dividingBy: 10))
So finally I didn't find any solution for the problem of how to split the large number and add it into an array. Looking forward for the solution.
Type Double stores a number as a mantissa and an exponent. The mantissa represents the significant figures of the number, and the exponent represents the magnitude of the number. A Double can only represent about 16 significant figures, and your number has 26 digits, so you can't accurately store 15511210043330985984000000 in a Double.
let number1: Double = 15511210043330985984000000
let number2: Double = 15511210043330985984012345
if number1 == number2 {
print("they are equal")
}
they are equal
You will need another approach to find large factorials like the one shown in this answer.

How to check if a number is a power of 2 in SWIFT

I find out a lot of example to solve it, but nothing in SWIFT. Please help
smthng like this
Input : n = 4
Output : Yes
2^2 = 4
Input : n = 7
Output : No
Input : n = 32
Output : Yes
2^5 = 32
I needed algorithm for checking if a number is a power of 2. like 4, 8, 16 , 32 , 64 .... is number power of two
Determining if an integer is a power of 2
from the Bit Twiddling Hacks
is almost verbatim translated to Swift:
func isPowerOfTwo(_ n: Int) -> Bool {
return (n > 0) && (n & (n - 1) == 0)
}
Example:
print(isPowerOfTwo(4)) // true
print(isPowerOfTwo(5)) // false
Or as a generic function, so that it can be used with all binary
integer types:
func isPowerOfTwo<T: BinaryInteger> (_ n: T) -> Bool {
return (n > 0) && (n & (n - 1) == 0)
}
Example:
print(isPowerOfTwo(Int16(4))) // true
print(isPowerOfTwo(UInt8(5))) // false
Or as a protocol extension:
extension BinaryInteger {
var isPowerOfTwo: Bool {
return (self > 0) && (self & (self - 1) == 0)
}
}
Example:
print(1048576.isPowerOfTwo) // true
print(Int(50).isPowerOfTwo) // false
Partial answer:
If it's a FixedWidthInteger and it's positive and its non zero bit count is 1, then it is a power of 2.
let x = 128
if x > 0 && x.nonzeroBitCount == 1
{
// power of 2
}
For a floating point number, I think you can just test the significand. If it is exactly 1, the number is a power of 2.
let x: Double = 4
if x > 0 && x.significand == 1
{
// Power of 2
}
I haven't checked that in a Playground yet, so it might be wrong.
let numberToBeChecked = 4
result = numberToBeChecked.squareRoot()
If result%1 == 0 {
print(“4 is a power of 2”) } else {
print(“4 is not a power of 2”)
}
//note: result%1== 0 checks if result is a whole number.
Hope this works.

How to calculate the 21! (21 factorial) in swift?

I am making fuction that calculate factorial in swift. like this
func factorial(factorialNumber: UInt64) -> UInt64 {
if factorialNumber == 0 {
return 1
} else {
return factorialNumber * factorial(factorialNumber - 1)
}
}
let x = factorial(20)
this fuction can calculate untill 20.
I think factorial(21) value bigger than UINT64_MAX.
then How to calculate the 21! (21 factorial) in swift?
func factorial(_ n: Int) -> Double {
return (1...n).map(Double.init).reduce(1.0, *)
}
(1...n): We create an array of all the numbers that are involved in the operation (i.e: [1, 2, 3, ...]).
map(Double.init): We change from Int to Double because we can represent bigger numbers with Doubles than with Ints (https://en.wikipedia.org/wiki/Double-precision_floating-point_format). So, we now have the array of all the numbers that are involved in the operation as Doubles (i.e: [1.0, 2.0, 3.0, ...]).
reduce(1.0, *): We start multiplying 1.0 with the first element in the array (1.0*1.0 = 1.0), then the result of that with the next one (1.0*2.0 = 2.0), then the result of that with the next one (2.0*3.0 = 6.0), and so on.
Step 2 is to avoid the overflow issue.
Step 3 is to save us from explicitly defining a variable for keeping track of the partial results.
Unsigned 64 bit integer has a maximum value of 18,446,744,073,709,551,615. While 21! = 51,090,942,171,709,440,000. For this kind of case, you need a Big Integer type. I found a question about Big Integer in Swift. There's a library for Big Integer in that link.
BigInteger equivalent in Swift?
Did you think about using a double perhaps? Or NSDecimalNumber?
Also calling the same function recursively is really bad performance wise.
How about using a loop:
let value = number.intValue - 1
var product = NSDecimalNumber(value: number.intValue)
for i in (1...value).reversed() {
product = product.multiplying(by: NSDecimalNumber(value: i))
}
Here's a function that accepts any type that conforms to the Numeric protocol, which are all builtin number types.
func factorial<N: Numeric>(_ x: N) -> N {
x == 0 ? 1 : x * factorial(x - 1)
}
First we need to declare temp variable of type double so it can hold size of number.
Then we create a function that takes a parameter of type double.
Then we check, if the number equal 0 we can return or do nothing. We have an if condition so we can break the recursion of the function. Finally we return temp, which holds the factorial of given number.
var temp:Double = 1.0
func factorial(x:Double) -> Double{
if(x==0){
//do nothing
}else{
factorial(x: x-1)
temp *= x
}
return temp
}
factorial(x: 21.0)
I make function calculate factorial like this:
func factorialNumber( namber : Int ) -> Int {
var x = 1
for i in 1...namber {
x *= i
}
return x
}
print ( factorialNumber (namber : 5 ))
If you are willing to give up precision you can use a Double to roughly calculate factorials up to 170:
func factorial(_ n: Int) -> Double {
if n == 0 {
return 1
}
var a: Double = 1
for i in 1...n {
a *= Double(i)
}
return a
}
If not, use a big integer library.
func factoruial(_ num:Int) -> Int{
if num == 0 || num == 1{
return 1
}else{
return(num*factoruial(num - 1))
}
}
Using recursion to solve this problem:
func factorial(_ n: UInt) -> UInt {
return n < 2 ? 1 : n*factorial(n - 1)
}
func factorial(a: Int) -> Int {
return a == 1 ? a : a * factorial(a: a - 1)
}
print(factorial(a : 5))
print(factorial(a: 9))

Generate random number of certain amount of digits

Hy,
I have a very Basic Question which is :
How can i create a random number with 20 digits no floats no negatives (basically an Int) in Swift ?
Thanks for all answers XD
Step 1
First of all we need an extension of Int to generate a random number in a range.
extension Int {
init(_ range: Range<Int> ) {
let delta = range.startIndex < 0 ? abs(range.startIndex) : 0
let min = UInt32(range.startIndex + delta)
let max = UInt32(range.endIndex + delta)
self.init(Int(min + arc4random_uniform(max - min)) - delta)
}
}
This can be used this way:
Int(0...9) // 4 or 1 or 1...
Int(10...99) // 90 or 33 or 11
Int(100...999) // 200 or 333 or 893
Step 2
Now we need a function that receive the number of digits requested, calculates the range of the random number and finally does invoke the new initializer of Int.
func random(digits:Int) -> Int {
let min = Int(pow(Double(10), Double(digits-1))) - 1
let max = Int(pow(Double(10), Double(digits))) - 1
return Int(min...max)
}
Test
random(1) // 8
random(2) // 12
random(3) // 829
random(4) // 2374
Swift 5: Simple Solution
func random(digits:Int) -> String {
var number = String()
for _ in 1...digits {
number += "\(Int.random(in: 1...9))"
}
return number
}
print(random(digits: 1)) //3
print(random(digits: 2)) //59
print(random(digits: 3)) //926
Note It will return value in String, if you need Int value then you can do like this
let number = Int(random(digits: 1)) ?? 0
Here is some pseudocode that should do what you want.
generateRandomNumber(20)
func generateRandomNumber(int numDigits){
var place = 1
var finalNumber = 0;
for(int i = 0; i < numDigits; i++){
place *= 10
var randomNumber = arc4random_uniform(10)
finalNumber += randomNumber * place
}
return finalNumber
}
Its pretty simple. You generate 20 random numbers, and multiply them by the respective tens, hundredths, thousands... place that they should be on. This way you will guarantee a number of the correct size, but will randomly generate the number that will be used in each place.
Update
As said in the comments you will most likely get an overflow exception with a number this long, so you'll have to be creative in how you'd like to store the number (String, ect...) but I merely wanted to show you a simple way to generate a number with a guaranteed digit length. Also, given the current code there is a small chance your leading number could be 0 so you should protect against that as well.
you can create a string number then convert the number to your required number.
func generateRandomDigits(_ digitNumber: Int) -> String {
var number = ""
for i in 0..<digitNumber {
var randomNumber = arc4random_uniform(10)
while randomNumber == 0 && i == 0 {
randomNumber = arc4random_uniform(10)
}
number += "\(randomNumber)"
}
return number
}
print(Int(generateRandomDigits(3)))
for 20 digit you can use Double instead of Int
Here is 18 decimal digits in a UInt64:
(Swift 3)
let sz: UInt32 = 1000000000
let ms: UInt64 = UInt64(arc4random_uniform(sz))
let ls: UInt64 = UInt64(arc4random_uniform(sz))
let digits: UInt64 = ms * UInt64(sz) + ls
print(String(format:"18 digits: %018llu", digits)) // Print with leading 0s.
16 decimal digits with leading digit 1..9 in a UInt64:
let sz: UInt64 = 100000000
let ld: UInt64 = UInt64(arc4random_uniform(9)+1)
let ms: UInt64 = UInt64(arc4random_uniform(UInt32(sz/10)))
let ls: UInt64 = UInt64(arc4random_uniform(UInt32(sz)))
let digits: UInt64 = ld * (sz*sz/10) + (ms * sz) + ls
print(String(format:"16 digits: %llu", digits))
Swift 3
appzyourlifz's answer updated to Swift 3
Step 1:
extension Int {
init(_ range: Range<Int> ) {
let delta = range.lowerBound < 0 ? abs(range.lowerBound) : 0
let min = UInt32(range.lowerBound + delta)
let max = UInt32(range.upperBound + delta)
self.init(Int(min + arc4random_uniform(max - min)) - delta)
}
}
Step 2:
func randomNumberWith(digits:Int) -> Int {
let min = Int(pow(Double(10), Double(digits-1))) - 1
let max = Int(pow(Double(10), Double(digits))) - 1
return Int(Range(uncheckedBounds: (min, max)))
}
Usage:
randomNumberWith(digits:4) // 2271
randomNumberWith(digits:8) // 65273410
Swift 4 version of Unome's validate response plus :
Guard it against overflow and 0 digit number
Adding support for Linux's device because "arc4random*" functions don't exit
With linux device don't forgot to do
#if os(Linux)
srandom(UInt32(time(nil)))
#endif
only once before calling random.
/// This function generate a random number of type Int with the given digits number
///
/// - Parameter digit: the number of digit
/// - Returns: the ramdom generate number or nil if wrong parameter
func randomNumber(with digit: Int) -> Int? {
guard 0 < digit, digit < 20 else { // 0 digit number don't exist and 20 digit Int are to big
return nil
}
/// The final ramdom generate Int
var finalNumber : Int = 0;
for i in 1...digit {
/// The new generated number which will be add to the final number
var randomOperator : Int = 0
repeat {
#if os(Linux)
randomOperator = Int(random() % 9) * Int(powf(10, Float(i - 1)))
#else
randomOperator = Int(arc4random_uniform(9)) * Int(powf(10, Float(i - 1)))
#endif
} while Double(randomOperator + finalNumber) > Double(Int.max) // Verification to be sure to don't overflow Int max size
finalNumber += randomOperator
}
return finalNumber
}