Spark flushing Dataframe on show / count - scala

I am trying to print the count of a dataframe, and then first few rows of it, before finally sending it out for further processing.
Strangely, after a call to count() the dataframe becomes empty.
val modifiedDF = funcA(sparkDF)
val deltaDF = modifiedDF.except(sparkDF)
println(deltaDF.count()) // prints 10
println(deltaDF.count()) //prints 0, similar behavior with show
funcB(deltaDF) //gets null dataframe
I was able to verify the same using deltaDF.collect.foreach(println) and subsequent calls to count.
However, if I do not call count or show, and just send it as is, funcB gets the whole DF with 10 rows.
Is it expected?
Definition of funcA() and its dependencies:
def funcA(inputDataframe: DataFrame): DataFrame = {
val col_name = "colA"
val modified_df = inputDataframe.withColumn(col_name, customUDF(col(col_name)))
val modifiedDFRaw = modified_df.limit(10)
modifiedDFRaw.withColumn("colA", modifiedDFRaw.col("colA").cast("decimal(38,10)"))
}
val customUDF = udf[Option[java.math.BigDecimal], java.math.BigDecimal](myUDF)
def myUDF(sval: java.math.BigDecimal): Option[java.math.BigDecimal] = {
val strg_name = Option(sval).getOrElse(return None)
if (change_cnt < 20) {
change_cnt = change_cnt + 1
Some(strg_name.multiply(new java.math.BigDecimal("1000")))
} else {
Some(strg_name)
}
}

First of all function used as UserDefinedFunction has to be at least idempotent, but optimally pure. Otherwise the results are simply non-deterministic. While some escape hatch is provided in the latest versions (it is possible to hint Spark that function shouldn't be re-executed) these won't help you here.
Moreover having mutable stable (it is not exactly clear what is the source of change_cnt, but it is both written and read in the udf) as simply no go - Spark doesn't provide global mutable state.
Overall your code:
Modifies some local copy of some object.
Makes decision based on such object.
Unfortunately both components are simply not salvageable. You'll have to go back to planning phase and rethink your design.

Your Dataframe is a distributed dataset and trying to do a count() returns unpredictable results since the count() can be different in each node. Read the documentation about RDDs below. It is applicable to DataFrames as well.
https://spark.apache.org/docs/2.3.0/rdd-programming-guide.html#understanding-closures-
https://spark.apache.org/docs/2.3.0/rdd-programming-guide.html#printing-elements-of-an-rdd

Related

Iterating through Seq[row] till a particular condition is met using Scala

I need to iterate a scala Seq of Row type until a particular condition is met. i dont need to process further post the condition.
I have a seq[Row] r->WrappedArray([1/1/2020,abc,1],[1/2/2020,pqr,1],[1/3/2020,stu,0],[1/4/2020,opq,1],[1/6/2020,lmn,0])
I want to iterate through this collection for r.getInt(2) until i encounter 0. As soon as i encounter 0, i need to break the iteration and collect r.getString(1) till then. I dont need to look into any other data post that.
My output should be: Array(abc,pqr,stu)
I am new to scala programming. This seq was actually a Dataframe. I know how to handle this using Spark dataframes, but due to some restriction put forth by my organization, windows function, createDataFrame function are not available/working in our environment. Hence i have resort to Scala programming to achieve the same.
All I could come up was something like below, but not really working!
breakable{
for(i <- r)
var temp = i.getInt(3)===0
if(temp ==true)
{
val = i.getInt(2)
break()
}
}
Can someone please help me here!
You can use the takeWhile method to grab the elements while it's value is 1
s.takeWhile(_.getInt(2) == 1).map(_.getString(1))
Than will give you
List(abc, pqr)
So you still need to get the first element where the int values 0 which you can do as follows:
s.find(_.getInt(2)== 0).map(_.getString(1)).get
Putting all together (and handle possible nil values):
s.takeWhile(_.getInt(2) == 1).map(_.getString(1)) ++ s.find(_.getInt(2)== 0).map(r => List(r.getString(1))).getOrElse(Nil)
Result:
Seq[String] = List(abc, pqr, stu)

What's the simplest way to get a Spark DataFrame from arbitrary Array Data in Scala?

I've been breaking my head about this one for a couple of days now. It feels like it should be intuitively easy... Really hope someone can help!
I've built an org.nd4j.linalg.api.ndarray.INDArray of word occurrence from some semi-structured data like this:
import org.nd4j.linalg.factory.Nd4j
import org.nd4s.Implicits._
val docMap = collection.mutable.Map[Int,Map[Int,Int]] //of the form Map(phrase -> Map(phrasePosition -> word)
val words = ArrayBuffer("word_1","word_2","word_3",..."word_n")
val windows = ArrayBuffer("$phrase,$phrasePosition_1","$phrase,$phrasePosition_2",..."$phrase,$phrasePosition_n")
var matrix = Nd4j.create(windows.length*words.length).reshape(windows.length,words.length)
for (row <- matrix.shape(0)){
for(column <- matrix.shape(1){
//+1 to (row,column) if word occurs at phrase, phrasePosition indicated by window_n.
}
}
val finalmatrix = matrix.T.dot(matrix) // to get co-occurrence matrix
So far so good...
Downstream of this point I need to integrate the data into an existing pipeline in Spark, and use that implementation of pca etc, so I need to create a DataFrame, or at least an RDD. If I knew the number of words and/or windows in advance I could do something like:
case class Row(window : String, word_1 : Double, word_2 : Double, ...etc)
val dfSeq = ArrayBuffer[Row]()
for (row <- matrix.shape(0)){
dfSeq += Row(windows(row),matrix.get(NDArrayIndex.point(row), NDArrayIndex.all()))
}
sc.parallelize(dfSeq).toDF("window","word_1","word_2",...etc)
but the number of windows and words is determined at runtime. I'm looking for a WindowsxWords org.apache.spark.sql.DataFrame as output, input is a WindowsxWords org.nd4j.linalg.api.ndarray.INDArray
Thanks in advance for any help you can offer.
Ok, so after several days work it looks like the simple answer is: there isn't one. In fact, it looks like trying to use Nd4j in this context at all is a bad idea for several reasons:
It's (really) hard to get data out of the native INDArray format once you've put it in.
Even using something like guava, the .data() method brings everything on heap which will quickly become expensive.
You've got the added hassle of having to compile an assembly jar or use hdfs etc to handle the library itself.
I did also consider using Breeze which may actually provide a viable solution but carries some of the same problems and can't be used on distributed data structures.
Unfortunately, using native Spark / Scala datatypes, although easier once you know how, is - for someone like me coming from Python + numpy + pandas heaven at least - painfully convoluted and ugly.
Nevertheless, I did implement this solution successfully:
import org.apache.spark.mllib.linalg.{Vectors,Vector,Matrix,DenseMatrix,DenseVector}
import org.apache.spark.mllib.linalg.distributed.RowMatrix
//first make a pseudo-matrix from Scala Array[Double]:
var rowSeq = Seq.fill(windows.length)(Array.fill(words.length)(0d))
//iterate through 'rows' and 'columns' to fill it:
for (row 0 until windows.length){
for (column 0 until words.length){
// rowSeq(row)(column) += 1 if word occurs at phrase, phrasePosition indicated by window_n.
}
}
//create Spark DenseMatrix
val rows : Array[Double] = rowSeq.transpose.flatten.toArray
val matrix = new DenseMatrix(windows.length,words.length,rows)
One of the main operations that I needed Nd4J for was matrix.T.dot(matrix) but it turns out that you can't multiply 2 matrices of Type org.apache.spark.mllib.linalg.DenseMatrix together, one of them (A) has to be a org.apache.spark.mllib.linalg.distributed.RowMatrix and - you guessed it - you can't call matrix.transpose() on a RowMatrix, only on a DenseMatrix! Since it's not really relevant to the question, I'll leave that part out, except to explain that what comes out of that step is a RowMatrix. Credit is also due here and here for the final part of the solution:
val rowMatrix : [RowMatrix] = transposeAndDotDenseMatrix(matrix)
// get DataFrame from RowMatrix via DenseMatrix
val newdense = new DenseMatrix(rowMatrix.numRows().toInt,rowMatrix.numCols().toInt,rowMatrix.rows.collect.flatMap(x => x.toArray)) // the call to collect() here is undesirable...
val matrixRows = newdense.rowIter.toSeq.map(_.toArray)
val df = spark.sparkContext.parallelize(matrixRows).toDF("Rows")
// then separate columns:
val df2 = (0 until words.length).foldLeft(df)((df, num) =>
df.withColumn(words(num), $"Rows".getItem(num)))
.drop("Rows")
Would love to hear improvements and suggestions on this, thanks.

spark streaming - use previous calculated dataframe in next iteration

I have a streaming app that take a dstream and run an sql manipulation over the Dstream and dump it to file
dstream.foreachRDD { rdd =>
{spark.read.json(rdd)
.select("col")
.filter("value = 1")
.write.csv("s3://..")
now I need to be able to take into account the previous calculation (from eaelier batch) in my calculation (something like the following):
dstream.foreachRDD { rdd =>
{val df = spark.read.json(rdd)
val prev_df = read_prev_calc()
df.join(prev_df,"id")
.select("col")
.filter(prev_df("value)
.equalTo(1)
.write.csv("s3://..")
is there a way to write the calc result in memory somehow and use it as an input to to the calculation
Have you tried using the persist() method on a DStream? It will automatically persist every RDD of that DStream in memory.
by default, all input data and persisted RDDs generated by DStream transformations are automatically cleared.
Also, DStreams generated by window-based operations are automatically persisted in memory.
For more details, you can check https://spark.apache.org/docs/latest/streaming-programming-guide.html#caching--persistence
https://spark.apache.org/docs/0.7.2/api/streaming/spark/streaming/DStream.html
If you are looking only for one or two previously calculated dataframes, you should look into Spark Streaming Window.
Below snippet is from spark documentation.
val windowedStream1 = stream1.window(Seconds(20))
val windowedStream2 = stream2.window(Minutes(1))
val joinedStream = windowedStream1.join(windowedStream2)
or even simpler, if we want to do a word count over the last 20 seconds of data, every 10 seconds, we have to apply the reduceByKey operation on the pairs DStream of (word, 1) pairs over the last 30 seconds of data. This is done using the operation reduceByKeyAndWindow.
// Reduce last 20 seconds of data, every 10 seconds
val windowedWordCounts = pairs.reduceByKeyAndWindow((a:Int,b:Int) => (a + b), Seconds(20), Seconds(10))
more details and examples at-
https://spark.apache.org/docs/latest/streaming-programming-guide.html#window-operations

Spark: Randomly sampling with replacement a DataFrame with the same amount of sample for each class

Despite existing a lot of seemingly similar questions none answers my question.
I have a DataFrame already processed in order to be fed to a DecisionTreeClassifier and it contains a column label which is filled with either 0.0 or 1.0.
I need to bootstrap my data set, by randomly selecting with replacement the same amount of rows for each values of my label column.
I've looked at all the doc and all I could find are DataFrame.sample(...) and DataFrameStatFunctions.sampleBy(...) but the issue with those are that the number of sample retained is not guaranteed and the second one doesn't allow replacement! This wouldn't be an issue on larger data set but in around 50% of my cases I'll have one of the label values that have less than a hundred rows and I really don't want skewed data.
Despite my best efforts, I was unable to find a clean solution to this problem and I resolved myself. to collecting the whole DataFrame and doing the sampling "manually" in Scala before recreating a new DataFrame to train my DecisionTreeClassifier on. But this seem highly inefficient and cumbersome, I would much rather stay with DataFrame and keep all the benefits coming from that structure.
Here is my current implementation for reference and so you know exactly what I'd like to do:
val nbSamplePerClass = /* some int value currently ranging between 50 and 10000 */
val onesDataFrame = inputDataFrame.filter("label > 0.0")
val zeros = inputDataFrame.except(onesDataFrame).collect()
val ones = onesDataFrame.collect()
val nbZeros = zeros.count().toInt
val nbOnes = ones.count().toInt
def randomIndexes(maxIndex: Int) = (0 until nbSamplePerClass).map(
_ => new scala.util.Random().nextInt(maxIndex)).toSeq
val zerosSample = randomIndexes(nbZeros).map(idx => zeros(idx))
val onesSample = randomIndexes(nbOnes).map(idx => ones(idx))
val samples = scala.collection.JavaConversions.seqAsJavaList(zerosSample ++ onesSample)
val resDf = sqlContext.createDataFrame(samples, inputDataFrame.schema)
Does anyone know how I could implement such a sampling while only working with DataFrames?
I'm pretty sure that it would significantly speed up my code!
Thank you for your time.

How to use existing trained model using LinearRegressionModel to work with SparkStreaming and predict data with it [duplicate]

I have the following code:
val blueCount = sc.accumulator[Long](0)
val output = input.map { data =>
for (value <- data.getValues()) {
if (record.getEnum() == DataEnum.BLUE) {
blueCount += 1
println("Enum = BLUE : " + value.toString()
}
}
data
}.persist(StorageLevel.MEMORY_ONLY_SER)
output.saveAsTextFile("myOutput")
Then the blueCount is not zero, but I got no println() output! Am I missing anything here? Thanks!
This is a conceptual question...
Imagine You have a big cluster, composed of many workers let's say n workers and those workers store a partition of an RDD or DataFrame, imagine You start a map task across that data, and inside that map you have a print statement, first of all:
Where will that data be printed out?
What node has priority and what partition?
If all nodes are running in parallel, who will be printed first?
How will be this print queue created?
Those are too many questions, thus the designers/maintainers of apache-spark decided logically to drop any support to print statements inside any map-reduce operation (this include accumulators and even broadcast variables).
This also makes sense because Spark is a language designed for very large datasets. While printing can be useful for testing and debugging, you wouldn't want to print every line of a DataFrame or RDD because they are built to have millions or billions of rows! So why deal with these complicated questions when you wouldn't even want to print in the first place?
In order to prove this you can run this scala code for example:
// Let's create a simple RDD
val rdd = sc.parallelize(1 to 10000)
def printStuff(x:Int):Int = {
println(x)
x + 1
}
// It doesn't print anything! because of a logic design limitation!
rdd.map(printStuff)
// But you can print the RDD by doing the following:
rdd.take(10).foreach(println)
I was able to work it around by making a utility function:
object PrintUtiltity {
def print(data:String) = {
println(data)
}
}