To be clear, I want to know what is the mechanism that is used to populate the default value not the SQL syntax needed to create the default value constraint on the table.
Does Postgres use some kind of trigger that updates the default value if it is missing or something else?. I couldn't find an explanation on the official website.
This happens in the rewriteTargetListIU function in src/backend/rewrite/rewriteHandler.c. The comment says it all:
/*
* rewriteTargetListIU - rewrite INSERT/UPDATE targetlist into standard form
*
* This has the following responsibilities:
*
* 1. For an INSERT, add tlist entries to compute default values for any
* attributes that have defaults and are not assigned to in the given tlist.
* (We do not insert anything for default-less attributes, however. The
* planner will later insert NULLs for them, but there's no reason to slow
* down rewriter processing with extra tlist nodes.) Also, for both INSERT
* and UPDATE, replace explicit DEFAULT specifications with column default
* expressions.
So this happens during query rewrite, which is the step between parsing the SQL string and optimizing it.
Related
I have a Timescale database that someone else created.
How do I determine if create_hypertable was called on a table ?
For now I use this, but there must be a better way:
SELECT * FROM hypertable_relation_size('public.data');
And if create_hypertable was called on a table, which parameters (including chunk_time_interval) were used when calling create_hypertable ?
(In some cases there is a from_date and to_date)
TimescaleDB maintains metadata about hypertables and provides views to query for the metadata. Views are located in schema timescaledb_information and information about hypertables can be retrieved from timescaledb_information.hypertable.
For example:
SELECT * FROM timescaledb_information.hypertable WHERE table_name = 'data';
This API doc contains more information and examples.
Note that the time chunk interval can be changed over time, so the view doesn't provide information about it. So it is necessary to inspect every chunk to see its interval. This can be done by calling function chunk_relation_size_pretty described in the doc here. For example:
SELECT chunk_table, partitioning_columns, ranges
FROM chunk_relation_size_pretty('data');
If you are in another schema, then it is necessary to specify fully qualified name of the hypertable as it expects an identifier:
SET SCHEMA 'test';
SELECT chunk_table, partitioning_columns, ranges
FROM public.chunk_relation_size_pretty('public.data');
Updated syntax (version>2.0) to get metadata about hypertables :
SELECT * FROM timescaledb_information.hypertables WHERE hypertable_name = 'data';
See Can't display hypertable information: timescaledb_information.hypertable does not exist
Does PostgreSQL support computed / calculated columns, like MS SQL Server? I can't find anything in the docs, but as this feature is included in many other DBMSs I thought I might be missing something.
Eg: http://msdn.microsoft.com/en-us/library/ms191250.aspx
Postgres 12 or newer
STORED generated columns are introduced with Postgres 12 - as defined in the SQL standard and implemented by some RDBMS including DB2, MySQL, and Oracle. Or the similar "computed columns" of SQL Server.
Trivial example:
CREATE TABLE tbl (
int1 int
, int2 int
, product bigint GENERATED ALWAYS AS (int1 * int2) STORED
);
fiddle
VIRTUAL generated columns may come with one of the next iterations. (Not in Postgres 15, yet).
Related:
Attribute notation for function call gives error
Postgres 11 or older
Up to Postgres 11 "generated columns" are not supported.
You can emulate VIRTUAL generated columns with a function using attribute notation (tbl.col) that looks and works much like a virtual generated column. That's a bit of a syntax oddity which exists in Postgres for historic reasons and happens to fit the case. This related answer has code examples:
Store common query as column?
The expression (looking like a column) is not included in a SELECT * FROM tbl, though. You always have to list it explicitly.
Can also be supported with a matching expression index - provided the function is IMMUTABLE. Like:
CREATE FUNCTION col(tbl) ... AS ... -- your computed expression here
CREATE INDEX ON tbl(col(tbl));
Alternatives
Alternatively, you can implement similar functionality with a VIEW, optionally coupled with expression indexes. Then SELECT * can include the generated column.
"Persisted" (STORED) computed columns can be implemented with triggers in a functionally equivalent way.
Materialized views are a related concept, implemented since Postgres 9.3.
In earlier versions one can manage MVs manually.
YES you can!! The solution should be easy, safe, and performant...
I'm new to postgresql, but it seems you can create computed columns by using an expression index, paired with a view (the view is optional, but makes makes life a bit easier).
Suppose my computation is md5(some_string_field), then I create the index as:
CREATE INDEX some_string_field_md5_index ON some_table(MD5(some_string_field));
Now, any queries that act on MD5(some_string_field) will use the index rather than computing it from scratch. For example:
SELECT MAX(some_field) FROM some_table GROUP BY MD5(some_string_field);
You can check this with explain.
However at this point you are relying on users of the table knowing exactly how to construct the column. To make life easier, you can create a VIEW onto an augmented version of the original table, adding in the computed value as a new column:
CREATE VIEW some_table_augmented AS
SELECT *, MD5(some_string_field) as some_string_field_md5 from some_table;
Now any queries using some_table_augmented will be able to use some_string_field_md5 without worrying about how it works..they just get good performance. The view doesn't copy any data from the original table, so it is good memory-wise as well as performance-wise. Note however that you can't update/insert into a view, only into the source table, but if you really want, I believe you can redirect inserts and updates to the source table using rules (I could be wrong on that last point as I've never tried it myself).
Edit: it seems if the query involves competing indices, the planner engine may sometimes not use the expression-index at all. The choice seems to be data dependant.
One way to do this is with a trigger!
CREATE TABLE computed(
one SERIAL,
two INT NOT NULL
);
CREATE OR REPLACE FUNCTION computed_two_trg()
RETURNS trigger
LANGUAGE plpgsql
SECURITY DEFINER
AS $BODY$
BEGIN
NEW.two = NEW.one * 2;
RETURN NEW;
END
$BODY$;
CREATE TRIGGER computed_500
BEFORE INSERT OR UPDATE
ON computed
FOR EACH ROW
EXECUTE PROCEDURE computed_two_trg();
The trigger is fired before the row is updated or inserted. It changes the field that we want to compute of NEW record and then it returns that record.
PostgreSQL 12 supports generated columns:
PostgreSQL 12 Beta 1 Released!
Generated Columns
PostgreSQL 12 allows the creation of generated columns that compute their values with an expression using the contents of other columns. This feature provides stored generated columns, which are computed on inserts and updates and are saved on disk. Virtual generated columns, which are computed only when a column is read as part of a query, are not implemented yet.
Generated Columns
A generated column is a special column that is always computed from other columns. Thus, it is for columns what a view is for tables.
CREATE TABLE people (
...,
height_cm numeric,
height_in numeric GENERATED ALWAYS AS (height_cm * 2.54) STORED
);
db<>fiddle demo
Well, not sure if this is what You mean but Posgres normally support "dummy" ETL syntax.
I created one empty column in table and then needed to fill it by calculated records depending on values in row.
UPDATE table01
SET column03 = column01*column02; /*e.g. for multiplication of 2 values*/
It is so dummy I suspect it is not what You are looking for.
Obviously it is not dynamic, you run it once. But no obstacle to get it into trigger.
Example on creating an empty virtual column
,(SELECT *
From (values (''))
A("virtual_col"))
Example on creating two virtual columns with values
SELECT *
From (values (45,'Completed')
, (1,'In Progress')
, (1,'Waiting')
, (1,'Loading')
) A("Count","Status")
order by "Count" desc
I have a code that works and use the term calculated, I'm not on postgresSQL pure tho we run on PADB
here is how it's used
create table some_table as
select category,
txn_type,
indiv_id,
accum_trip_flag,
max(first_true_origin) as true_origin,
max(first_true_dest ) as true_destination,
max(id) as id,
count(id) as tkts_cnt,
(case when calculated tkts_cnt=1 then 1 else 0 end) as one_way
from some_rando_table
group by 1,2,3,4 ;
A lightweight solution with Check constraint:
CREATE TABLE example (
discriminator INTEGER DEFAULT 0 NOT NULL CHECK (discriminator = 0)
);
I have a dataset with multiple tables and the necessary relations in place to call SQL statements in the proper order.
When the Adapter.Update() method is called, I presume it scours the relationships between all tables to determine the order in which it makes SQL calls.
For example:
A delete in Table A requires first a delete in Table B.
An insert in Table B first requires an insert into Table A.
How can I leverage the mechanism it uses to implement my own update strategy?
Reason being, rather than being able to allow the Adapter to perform the Updates, I instead need to call Stored Procedures.
* * * * * * EDIT * * * * * *
The dataSet is passed from the UI client to a back-end server component.
On the back end server, the DataAdapter.Update(dataSet) occurs.
Maybe you could use the RowUpdating Event on your Tables and call your Stored Procedure from there ... also set SqlRowUpdatingEventArgs.Status to SkipCurrentRow to prevent the standard Update Sql Command from being triggered and call SqlRowUpdatingEventArgs.Row.AcceptChanges() to set the RowState back to Unchanged ...
Does PostgreSQL support computed / calculated columns, like MS SQL Server? I can't find anything in the docs, but as this feature is included in many other DBMSs I thought I might be missing something.
Eg: http://msdn.microsoft.com/en-us/library/ms191250.aspx
Postgres 12 or newer
STORED generated columns are introduced with Postgres 12 - as defined in the SQL standard and implemented by some RDBMS including DB2, MySQL, and Oracle. Or the similar "computed columns" of SQL Server.
Trivial example:
CREATE TABLE tbl (
int1 int
, int2 int
, product bigint GENERATED ALWAYS AS (int1 * int2) STORED
);
fiddle
VIRTUAL generated columns may come with one of the next iterations. (Not in Postgres 15, yet).
Related:
Attribute notation for function call gives error
Postgres 11 or older
Up to Postgres 11 "generated columns" are not supported.
You can emulate VIRTUAL generated columns with a function using attribute notation (tbl.col) that looks and works much like a virtual generated column. That's a bit of a syntax oddity which exists in Postgres for historic reasons and happens to fit the case. This related answer has code examples:
Store common query as column?
The expression (looking like a column) is not included in a SELECT * FROM tbl, though. You always have to list it explicitly.
Can also be supported with a matching expression index - provided the function is IMMUTABLE. Like:
CREATE FUNCTION col(tbl) ... AS ... -- your computed expression here
CREATE INDEX ON tbl(col(tbl));
Alternatives
Alternatively, you can implement similar functionality with a VIEW, optionally coupled with expression indexes. Then SELECT * can include the generated column.
"Persisted" (STORED) computed columns can be implemented with triggers in a functionally equivalent way.
Materialized views are a related concept, implemented since Postgres 9.3.
In earlier versions one can manage MVs manually.
YES you can!! The solution should be easy, safe, and performant...
I'm new to postgresql, but it seems you can create computed columns by using an expression index, paired with a view (the view is optional, but makes makes life a bit easier).
Suppose my computation is md5(some_string_field), then I create the index as:
CREATE INDEX some_string_field_md5_index ON some_table(MD5(some_string_field));
Now, any queries that act on MD5(some_string_field) will use the index rather than computing it from scratch. For example:
SELECT MAX(some_field) FROM some_table GROUP BY MD5(some_string_field);
You can check this with explain.
However at this point you are relying on users of the table knowing exactly how to construct the column. To make life easier, you can create a VIEW onto an augmented version of the original table, adding in the computed value as a new column:
CREATE VIEW some_table_augmented AS
SELECT *, MD5(some_string_field) as some_string_field_md5 from some_table;
Now any queries using some_table_augmented will be able to use some_string_field_md5 without worrying about how it works..they just get good performance. The view doesn't copy any data from the original table, so it is good memory-wise as well as performance-wise. Note however that you can't update/insert into a view, only into the source table, but if you really want, I believe you can redirect inserts and updates to the source table using rules (I could be wrong on that last point as I've never tried it myself).
Edit: it seems if the query involves competing indices, the planner engine may sometimes not use the expression-index at all. The choice seems to be data dependant.
One way to do this is with a trigger!
CREATE TABLE computed(
one SERIAL,
two INT NOT NULL
);
CREATE OR REPLACE FUNCTION computed_two_trg()
RETURNS trigger
LANGUAGE plpgsql
SECURITY DEFINER
AS $BODY$
BEGIN
NEW.two = NEW.one * 2;
RETURN NEW;
END
$BODY$;
CREATE TRIGGER computed_500
BEFORE INSERT OR UPDATE
ON computed
FOR EACH ROW
EXECUTE PROCEDURE computed_two_trg();
The trigger is fired before the row is updated or inserted. It changes the field that we want to compute of NEW record and then it returns that record.
PostgreSQL 12 supports generated columns:
PostgreSQL 12 Beta 1 Released!
Generated Columns
PostgreSQL 12 allows the creation of generated columns that compute their values with an expression using the contents of other columns. This feature provides stored generated columns, which are computed on inserts and updates and are saved on disk. Virtual generated columns, which are computed only when a column is read as part of a query, are not implemented yet.
Generated Columns
A generated column is a special column that is always computed from other columns. Thus, it is for columns what a view is for tables.
CREATE TABLE people (
...,
height_cm numeric,
height_in numeric GENERATED ALWAYS AS (height_cm * 2.54) STORED
);
db<>fiddle demo
Well, not sure if this is what You mean but Posgres normally support "dummy" ETL syntax.
I created one empty column in table and then needed to fill it by calculated records depending on values in row.
UPDATE table01
SET column03 = column01*column02; /*e.g. for multiplication of 2 values*/
It is so dummy I suspect it is not what You are looking for.
Obviously it is not dynamic, you run it once. But no obstacle to get it into trigger.
Example on creating an empty virtual column
,(SELECT *
From (values (''))
A("virtual_col"))
Example on creating two virtual columns with values
SELECT *
From (values (45,'Completed')
, (1,'In Progress')
, (1,'Waiting')
, (1,'Loading')
) A("Count","Status")
order by "Count" desc
I have a code that works and use the term calculated, I'm not on postgresSQL pure tho we run on PADB
here is how it's used
create table some_table as
select category,
txn_type,
indiv_id,
accum_trip_flag,
max(first_true_origin) as true_origin,
max(first_true_dest ) as true_destination,
max(id) as id,
count(id) as tkts_cnt,
(case when calculated tkts_cnt=1 then 1 else 0 end) as one_way
from some_rando_table
group by 1,2,3,4 ;
A lightweight solution with Check constraint:
CREATE TABLE example (
discriminator INTEGER DEFAULT 0 NOT NULL CHECK (discriminator = 0)
);
I'm trying to construct a T-SQL statement with a WHERE clause determined by an input parameter. Something like:
SELECT * FROM table
WHERE id IN
CASE WHEN #param THEN
(1,2,4,5,8)
ELSE
(9,7,3)
END
I've tried all combination of moving the IN, CASE etc around that I can think of. Is this (or something like it) possible?
try this:
SELECT * FROM table
WHERE (#param='??' AND id IN (1,2,4,5,8))
OR (#param!='??' AND id in (9,7,3))
this will have a problem using an index.
The key with a dynamic search conditions is to make sure an index is used, instead of how can I easily reuse code, eliminate duplications in a query, or try to do everything with the same query. Here is a very comprehensive article on how to handle this topic:
Dynamic Search Conditions in T-SQL by Erland Sommarskog
It covers all the issues and methods of trying to write queries with multiple optional search conditions. This main thing you need to be concerned with is not the duplication of code, but the use of an index. If your query fails to use an index, it will preform poorly. There are several techniques that can be used, which may or may not allow an index to be used.
here is the table of contents:
Introduction
The Case Study: Searching Orders
The Northgale Database
Dynamic SQL
Introduction
Using sp_executesql
Using the CLR
Using EXEC()
When Caching Is Not Really What You Want
Static SQL
Introduction
x = #x OR #x IS NULL
Using IF statements
Umachandar's Bag of Tricks
Using Temp Tables
x = #x AND #x IS NOT NULL
Handling Complex Conditions
Hybrid Solutions – Using both Static and Dynamic SQL
Using Views
Using Inline Table Functions
Conclusion
Feedback and Acknowledgements
Revision History
if you are on the proper version of SQL Server 2008, there is an additional technique that can be used, see: Dynamic Search Conditions in T-SQL Version for SQL 2008 (SP1 CU5 and later)
If you are on that proper release of SQL Server 2008, you can just add OPTION (RECOMPILE) to the query and the local variable's value at run time is used for the optimizations.
Consider this, OPTION (RECOMPILE) will take this code (where no index can be used with this mess of ORs):
WHERE
(#search1 IS NULL or Column1=#Search1)
AND (#search2 IS NULL or Column2=#Search2)
AND (#search3 IS NULL or Column3=#Search3)
and optimize it at run time to be (provided that only #Search2 was passed in with a value):
WHERE
Column2=#Search2
and an index can be used (if you have one defined on Column2)
if #param = 'whatever'
select * from tbl where id in (1,2,4,5,8)
else
select * from tbl where id in (9,7,3)