groupby and join vs window in pyspark - group-by

I have a data frame in pyspark which has hundreds of millions of rows (here is a dummy sample of it):
import datetime
import pyspark.sql.functions as F
from pyspark.sql import Window,Row
from pyspark.sql.functions import col
from pyspark.sql.functions import month, mean,sum,year,avg
from pyspark.sql.functions import concat_ws,to_date,unix_timestamp,datediff,lit
from pyspark.sql.functions import when,min,max,desc,row_number,col
dg = sqlContext.createDataFrame(sc.parallelize([
Row(cycle_dt=datetime.datetime(1984, 5, 2, 0, 0), network_id=4,norm_strength=0.5, spend_active_ind=1,net_spending_amt=0,cust_xref_id=10),
Row(cycle_dt=datetime.datetime(1984, 6, 2, 0, 0), network_id=4,norm_strength=0.5, spend_active_ind=1,net_spending_amt=2,cust_xref_id=11),
Row(cycle_dt=datetime.datetime(1984, 7, 2, 0, 0), network_id=4,norm_strength=0.5, spend_active_ind=1,net_spending_amt=2,cust_xref_id=12),
Row(cycle_dt=datetime.datetime(1984, 4, 2, 0, 0), network_id=4,norm_strength=0.5, spend_active_ind=1,net_spending_amt=2,cust_xref_id=13),
Row(cycle_dt=datetime.datetime(1983,11, 5, 0, 0), network_id=1,norm_strength=0.5, spend_active_ind=0,net_spending_amt=8,cust_xref_id=1 ),
Row(cycle_dt=datetime.datetime(1983,12, 2, 0, 0), network_id=1,norm_strength=0.5, spend_active_ind=0,net_spending_amt=2,cust_xref_id=1 ),
Row(cycle_dt=datetime.datetime(1984, 1, 3, 0, 0), network_id=1,norm_strength=0.5, spend_active_ind=1,net_spending_amt=15,cust_xref_id=1 ),
Row(cycle_dt=datetime.datetime(1984, 3, 2, 0, 0), network_id=1,norm_strength=0.5, spend_active_ind=0,net_spending_amt=7,cust_xref_id=1 ),
Row(cycle_dt=datetime.datetime(1984, 4, 3, 0, 0), network_id=1,norm_strength=0.5, spend_active_ind=0,net_spending_amt=1,cust_xref_id=1 ),
Row(cycle_dt=datetime.datetime(1984, 5, 2, 0, 0), network_id=1,norm_strength=0.5, spend_active_ind=0,net_spending_amt=1,cust_xref_id=1 ),
Row(cycle_dt=datetime.datetime(1984,10, 6, 0, 0), network_id=1,norm_strength=0.5, spend_active_ind=1,net_spending_amt=10,cust_xref_id=1 ),
Row(cycle_dt=datetime.datetime(1984, 1, 7, 0, 0), network_id=1,norm_strength=0.4, spend_active_ind=0,net_spending_amt=8,cust_xref_id=2 ),
Row(cycle_dt=datetime.datetime(1984, 1, 2, 0, 0), network_id=1,norm_strength=0.4, spend_active_ind=0,net_spending_amt=3,cust_xref_id=2 ),
Row(cycle_dt=datetime.datetime(1984, 2, 7, 0, 0), network_id=1,norm_strength=0.4, spend_active_ind=1,net_spending_amt=5,cust_xref_id=2 ),
Row(cycle_dt=datetime.datetime(1985, 2, 7, 0, 0), network_id=1,norm_strength=0.3, spend_active_ind=1,net_spending_amt=8,cust_xref_id=3 ),
Row(cycle_dt=datetime.datetime(1985, 3, 7, 0, 0), network_id=1,norm_strength=0.3, spend_active_ind=0,net_spending_amt=2,cust_xref_id=3 ),
Row(cycle_dt=datetime.datetime(1985, 4, 7, 0, 0), network_id=1,norm_strength=0.3, spend_active_ind=1,net_spending_amt=1,cust_xref_id=3 ),
Row(cycle_dt=datetime.datetime(1985, 4, 8, 0, 0), network_id=1,norm_strength=0.3, spend_active_ind=1,net_spending_amt=9,cust_xref_id=3 ),
Row(cycle_dt=datetime.datetime(1984, 4, 2, 0, 0), network_id=2,norm_strength=0.5, spend_active_ind=0,net_spending_amt=3,cust_xref_id=4 ),
Row(cycle_dt=datetime.datetime(1984, 4, 3, 0, 0), network_id=2,norm_strength=0.5, spend_active_ind=0,net_spending_amt=2,cust_xref_id=4 ),
Row(cycle_dt=datetime.datetime(1984, 1, 2, 0, 0), network_id=2,norm_strength=0.5, spend_active_ind=0,net_spending_amt=5,cust_xref_id=4 ),
Row(cycle_dt=datetime.datetime(1984, 1, 3, 0, 0), network_id=2,norm_strength=0.5, spend_active_ind=1,net_spending_amt=6,cust_xref_id=4 ),
Row(cycle_dt=datetime.datetime(1984, 3, 2, 0, 0), network_id=2,norm_strength=0.5, spend_active_ind=0,net_spending_amt=2,cust_xref_id=4 ),
Row(cycle_dt=datetime.datetime(1984, 1, 5, 0, 0), network_id=2,norm_strength=0.5, spend_active_ind=0,net_spending_amt=9,cust_xref_id=4 ),
Row(cycle_dt=datetime.datetime(1984, 1, 6, 0, 0), network_id=2,norm_strength=0.5, spend_active_ind=1,net_spending_amt=1,cust_xref_id=4 ),
Row(cycle_dt=datetime.datetime(1984, 1, 7, 0, 0), network_id=2,norm_strength=0.4, spend_active_ind=0,net_spending_amt=7,cust_xref_id=5 ),
Row(cycle_dt=datetime.datetime(1984, 1, 2, 0, 0), network_id=2,norm_strength=0.4, spend_active_ind=0,net_spending_amt=8,cust_xref_id=5 ),
Row(cycle_dt=datetime.datetime(1984, 2, 7, 0, 0), network_id=2,norm_strength=0.4, spend_active_ind=1,net_spending_amt=3,cust_xref_id=5 ),
Row(cycle_dt=datetime.datetime(1985, 2, 7, 0, 0), network_id=2,norm_strength=0.6, spend_active_ind=1,net_spending_amt=6,cust_xref_id=6 ),
Row(cycle_dt=datetime.datetime(1985, 3, 7, 0, 0), network_id=2,norm_strength=0.6, spend_active_ind=0,net_spending_amt=9,cust_xref_id=6 ),
Row(cycle_dt=datetime.datetime(1985, 4, 7, 0, 0), network_id=2,norm_strength=0.6, spend_active_ind=1,net_spending_amt=4,cust_xref_id=6 ),
Row(cycle_dt=datetime.datetime(1985, 4, 8, 0, 0), network_id=2,norm_strength=0.6, spend_active_ind=1,net_spending_amt=6,cust_xref_id=6 ),
Row(cycle_dt=datetime.datetime(1984, 4, 2, 0, 0), network_id=3,norm_strength=0.5, spend_active_ind=0,net_spending_amt=0,cust_xref_id=7 ),
Row(cycle_dt=datetime.datetime(1984, 4, 3, 0, 0), network_id=3,norm_strength=0.5, spend_active_ind=0,net_spending_amt=0,cust_xref_id=7 ),
Row(cycle_dt=datetime.datetime(1984, 1, 2, 0, 0), network_id=3,norm_strength=0.5, spend_active_ind=0,net_spending_amt=0,cust_xref_id=7 ),
Row(cycle_dt=datetime.datetime(1984, 1, 3, 0, 0), network_id=3,norm_strength=0.5, spend_active_ind=0,net_spending_amt=0,cust_xref_id=7 ),
Row(cycle_dt=datetime.datetime(1984, 3, 2, 0, 0), network_id=3,norm_strength=0.5, spend_active_ind=0,net_spending_amt=0,cust_xref_id=7 ),
Row(cycle_dt=datetime.datetime(1984, 1, 5, 0, 0), network_id=3,norm_strength=0.5, spend_active_ind=0,net_spending_amt=0,cust_xref_id=7 ),
Row(cycle_dt=datetime.datetime(1984, 1, 6, 0, 0), network_id=3,norm_strength=0.5, spend_active_ind=0,net_spending_amt=0,cust_xref_id=7 ),
Row(cycle_dt=datetime.datetime(1984, 1, 7, 0, 0), network_id=3,norm_strength=0.4, spend_active_ind=0,net_spending_amt=3,cust_xref_id=8 ),
Row(cycle_dt=datetime.datetime(1984, 1, 2, 0, 0), network_id=3,norm_strength=0.4, spend_active_ind=0,net_spending_amt=2,cust_xref_id=8 ),
Row(cycle_dt=datetime.datetime(1984, 2, 7, 0, 0), network_id=3,norm_strength=0.4, spend_active_ind=1,net_spending_amt=8,cust_xref_id=8 ),
Row(cycle_dt=datetime.datetime(1985, 2, 7, 0, 0), network_id=3,norm_strength=0.6, spend_active_ind=1,net_spending_amt=4,cust_xref_id=9 ),
Row(cycle_dt=datetime.datetime(1985, 3, 7, 0, 0), network_id=3,norm_strength=0.6, spend_active_ind=0,net_spending_amt=1,cust_xref_id=9 ),
Row(cycle_dt=datetime.datetime(1985, 4, 7, 0, 0), network_id=3,norm_strength=0.6, spend_active_ind=1,net_spending_amt=9,cust_xref_id=9 ),
Row(cycle_dt=datetime.datetime(1985, 4, 8, 0, 0), network_id=3,norm_strength=0.6, spend_active_ind=0,net_spending_amt=3,cust_xref_id=9 )
]))
I am trying to sumspend_active_ind for each cust_xref_id and keep those with sum more than zero. One way to do this is using grouby and join:
dg1 = dg.groupby("cust_xref_id").agg(sum("spend_active_ind").alias("sum_spend_active_ind"))
dg1 = dg1.filter(dg1.sum_spend_active_ind != 0).select("cust_xref_id")
dg = dg.alias("t1").join(dg1.alias("t2"),col("t1.cust_xref_id")==col("t2.cust_xref_id")).select(col("t1.*"))
The other way I can think of it is using window:
w = Window.partitionBy ('cust_xref_id')
dg = dg.withColumn('sum_spend_active_ind',sum(dg.spend_active_ind).over(w))
dg = dg.filter(dg.sum_spend_active_ind!=0)
which one of these methods (or any other method) is more efficient for what I am trying to do.
Thanks

You could try to open your spark-ui at localhost:4040, or see the query plan using the explain method:
(
dg
.groupby('cust_xref_id')
.agg(F.sum('spend_active_ind').alias('sum_spend_active_ind'))
.filter(F.col('sum_spend_active_ind') > 0)
).explain()

Related

Google Combo chart horizontal axis not showing all labels

We implemented the Google Combo chart with some horizontal labels in place. But somehow its not showing the first label. Does anybody have any insight in why its not working?
Example: https://www.cdfund.com/track-record/rendement/nac.html
Code example:
var data = new google.visualization.DataTable();
data.addColumn('date', 'Time of measurement');
data.addColumn('number', 'Benchmark (50%/50% TSX-V/HUI) ');
data.addColumn('number', 'CDF NAC ');
data.addRows([[new Date(2018, 0, 1),42.09,82.47,],[new Date(2018, 1, 1),42.88,82.47,],[new Date(2018, 2, 1),39.33,78.26,],[new Date(2018, 3, 1),38.96,72.98,],[new Date(2018, 4, 1),38.98,77.62,],[new Date(2018, 5, 1),38.64,79.53,],[new Date(2018, 6, 1),37.46,75.12,],[new Date(2018, 7, 1),35.75,72.28,],[new Date(2018, 8, 1),33.72,69.29,],[new Date(2018, 9, 1),33.10,71.27,],[new Date(2018, 10, 1),31.72,68.62,],[new Date(2018, 11, 1),30.54,65.53,],[new Date(2019, 0, 1),31.49,61.23,],[new Date(2019, 1, 1),34.30,64.15,],[new Date(2019, 2, 1),34.11,64.13,],[new Date(2019, 3, 1),34.37,63.52,],[new Date(2019, 4, 1),32.61,58.88,],[new Date(2019, 5, 1),32.38,56.60,],[new Date(2019, 6, 1),35.77,59.77,],[new Date(2019, 7, 1),36.44,62.15,],[new Date(2019, 8, 1),39.01,65.34,],[new Date(2019, 9, 1),35.86,61.54,],[new Date(2019, 10, 1),36.70,60.51,],[new Date(2019, 11, 1),36.03,59.00,],[new Date(2020, 0, 1),39.85,67.53,],[new Date(2020, 1, 1),39.15,66.76,],[new Date(2020, 2, 1),34.93,59.35,],[new Date(2020, 3, 1),28.78,50.16,],[new Date(2020, 4, 1),38.07,69.69,],[new Date(2020, 5, 1),41.80,79.14,],[new Date(2020, 6, 1),45.95,91.51,],[new Date(2020, 7, 1),54.05,104.16,],[new Date(2020, 8, 1),55.26,116.85,],[new Date(2020, 9, 1),51.67,115.98,],[new Date(2020, 10, 1),49.87,111.20,],[new Date(2020, 11, 1),49.84,113.11,],[new Date(2021, 0, 1),55.39,125.83,],[new Date(2021, 1, 1),55.39,117.29,],[new Date(2021, 2, 1),56.02,116.46,],[new Date(2021, 3, 1),54.85,113.09,],[new Date(2021, 4, 1),55.98,123.36,],[new Date(2021, 5, 1),60.81,133.58,],[new Date(2021, 6, 1),55.63,120.68,],[new Date(2021, 7, 1),55.32,118.26,],[new Date(2021, 8, 1),52.44,111.19,],[new Date(2021, 9, 1),48.82,102.59,],[new Date(2021, 10, 1),53.49,113.06,],[new Date(2021, 11, 1),53.79,109.98,],[new Date(2022, 0, 1),54.24,114.31,],[new Date(2022, 1, 1),50.69,106.74,],[new Date(2022, 2, 1),53.79,112.16,],[new Date(2022, 3, 1),58.19,118.96,],[new Date(2022, 4, 1),52.91,113.69,],[new Date(2022, 5, 1),47.26,102.92,],[new Date(2022, 6, 1),40.73,86.32,],[new Date(2022, 7, 1),40.44,95.37,],[new Date(2022, 8, 1),38.20,92.43,],[new Date(2022, 9, 1),37.64,81.94,],[new Date(2022, 10, 1),37.82,81.27,],[new Date(2022, 11, 1),,,]]);
var options = {
hAxis: {
format: 'yyyy',
gridlines: { count: 5, color: 'transparent' },
ticks: [new Date(2018, 3, 1), new Date(2019, 1, 1), new Date(2020, 1, 1), new Date(2021, 1, 1), new Date(2022, 1, 1)],
minorGridlines: { color: 'transparent' },
textStyle: { color: '#000', fontSize: 8 }
},
vAxis: {
minorGridlines: { color: 'transparent' },
gridlines: { count: 4 },
textStyle: { color: '#706345', italic: true, fontSize: 8 },
textPosition: 'in',
},
height: '360',
colors: ['#CB9B01','#AA9870','#C2AE81','#706345','#E2D7BD'],
backgroundColor: '#F4F3F0',
chartArea: { 'width': '90%', 'height': '65%' },
legend: { 'position': 'bottom', padding: 30 },
seriesType: 'area',
series: { 1: { type: 'line' }, 2: { type: 'line' }, 3: { type: 'line' }, 4: { type: 'line' }, 5: { type: 'line' } }
};
Thanks

Flutter I can't read an image with readasbytessync with local file

i do not understand why the image directly from image_picker work but not the image load from app directory, i thought it was a rights issue (I have the right to read or record), but the images come from the same folder.
I don't know if I'm clear, but has anyone had the same problem?
Code:
print(image);
final fileBytes = image.readAsBytesSync();
print(fileBytes);
Return of the just taken image:
File: '/data/user/0/com.wallis.env_wallis/app_flutter/1.jpg'
[255, 216, 255, 225, 1, 149, 69, 120, 105, 102, 0, 0, 77, 77, 0, 42, 0, 0, 0, 8, 0, 10, 1, 59, 0, 2, 0, 0, 0, 22, 0, 0, 0, 134, 1, 0, 0, 4, 0, 0, 0, 1, 0, 0, 2, 128, 1, 16, 0, 2, 0, 0, 0, 6, 0, 0, 0, 156, 1, 1, 0, 4, 0, 0, 0, 1, 0, 0, 1, 224, 1, 15, 0, 2, 0, 0, 0, 7, 0, 0, 0, 162, 1, 14, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 135, 105, 0, 4, 0, 0, 0, 1, 0, 0, 0, 189, 1, 18, 0, 3, 0, 0, 0, 1, 0, 6, 0, 0, 1, 50, 0, 2, 0, 0, 0, 20, 0, 0, 0, 169, 136, 37, 0, 4, 0, 0, 0, 1, 0, 0, 1, 47, 0, 0, 0, 0, 50, 52, 46, 68, 69, 83, 84, 82, 85, 67, 84, 73, 79, 78, 32, 70, 79, 82, 69, 84, 83, 0, 77, 105, 32, 57, 84, 0, 88, 105, 97, 111, 109, 105, 0, 50, 48, 50, 49, 58, 49, 48, 58, 48, 51, 32, 48, 57, 58, 52, 50, 58, 51, 57, 0, 0, 7, 164, 3, 0, 3, 0, 0, 0, 1, 0, 0, 0, 0, 136, 39, 0, 3, 0, 0, 0, 1, 76, 165, 0, 0, 146, 10, 0, 5, 0, 0, 0, 1, 0, 0, 1, 23, 130, 154, 0, 5, 0, 0, 0, 1, 0, 0, 1, 31, 146, 9, 0, 3, 0, 0, 0, 1, 0, 16, 0, 0, 146, 8, 0, 4, 0, 0, 0, 1, 0, 0, 0, 0, 130, 157, 0, 5, 0, 0, 0, 1, 0, 0, 1, 39, 0, 0, 0, 0, 0, 0, 18, 162,
Return of the image taken in the folder :
File: '/data/user/0/com.wallis.env_wallis/app_flutter/485.jpg'
[]
the exifs seem to have trouble being saved after renaming the image several times, when I sent a renamed image it was fine but when I renamed the image again that was the problem.
So I shifted the time when I rename the images to fix the problem.

How to create a grand total from cumulative values

I have created a report that shows the cumulative totals for each loss month - when a claim was opened and closed. The image below might help explain this a bit better:
The y-axis the the month of the loss date - and the x-axis shows the months the claim was either opened or closed. And it is a cumulative total going left to right.
For instance, in Jan. 2014 - there were five total claims opened and one claim that was closed. Then in Feb. 2014 - two more claims were opened while a second claim was closed.
The yellow-highlighted cell in the image is the value that I am having trouble calculating. To get the total for the individual loss months - I used a windows function to get the max value and partitioned by year, claim month, and claim status -
MAX( ClaimCount ) OVER (PARTITION BY Year, ClaimMonth, ClaimStatus)
Unfortunately for me, I have been unable to figure out how to calculate the grand total for the total number of claims ( closed & total ).
Below is sample data:
CREATE TABLE #claimcount
(
Year INT NULL,
ClaimStatus VARCHAR (25) NULL,
LossMonth DATE NULL,
ClaimMonth DATE NULL,
ClaimCount INT NULL,
ClaimTotalPerLossMonth INT NULL,
ClaimTotalPerClaimMonth INT NULL,
ClaimCountPerLossYear INT NULL
);
INSERT INTO #claimcount
(
Year,
ClaimStatus,
LossMonth,
ClaimMonth,
ClaimCount,
ClaimTotalPerLossMonth,
ClaimTotalPerClaimMonth,
ClaimCountPerLossYear
)
VALUES
(2014, 'Closed', '20140131', '20140131', 1, 7, 1, NULL),
(2014, 'Total', '20140131', '20140131', 5, 7, 5, NULL),
(2014, 'Closed', '20140131', '20140228', 2, 7, 2, NULL),
(2014, 'Total', '20140131', '20140228', 7, 7, 9, NULL),
(2014, 'Closed', '20140131', '20140331', 5, 7, 6, NULL),
(2014, 'Total', '20140131', '20140331', 7, 7, 11, NULL),
(2014, 'Closed', '20140131', '20140430', 5, 7, 8, NULL),
(2014, 'Total', '20140131', '20140430', 7, 7, 16, NULL),
(2014, 'Closed', '20140131', '20140531', 5, 7, 9, NULL),
(2014, 'Total', '20140131', '20140531', 7, 7, 33, NULL),
(2014, 'Closed', '20140131', '20140630', 5, 7, 15, NULL),
(2014, 'Total', '20140131', '20140630', 7, 7, 54, NULL),
(2014, 'Closed', '20140131', '20140731', 5, 7, 23, NULL),
(2014, 'Total', '20140131', '20140731', 7, 7, 78, NULL),
(2014, 'Closed', '20140131', '20140831', 6, 7, 48, NULL),
(2014, 'Total', '20140131', '20140831', 7, 7, 109, NULL),
(2014, 'Closed', '20140131', '20140930', 6, 7, 78, NULL),
(2014, 'Total', '20140131', '20140930', 7, 7, 136, NULL),
(2014, 'Closed', '20140131', '20141031', 7, 7, 94, NULL),
(2014, 'Total', '20140131', '20141031', 7, 7, 163, NULL),
(2014, 'Closed', '20140131', '20141130', 7, 7, 110, NULL),
(2014, 'Total', '20140131', '20141130', 7, 7, 187, NULL),
(2014, 'Closed', '20140131', '20141231', 7, 7, 128, NULL),
(2014, 'Total', '20140131', '20141231', 7, 7, 209, NULL),
(2014, 'Closed', '20140131', '20150131', 7, 7, 144, NULL),
(2014, 'Total', '20140131', '20150131', 7, 7, 240, NULL),
(2014, 'Closed', '20140131', '20150228', 7, 7, 167, NULL),
(2014, 'Total', '20140131', '20150228', 7, 7, 280, NULL),
(2014, 'Closed', '20140131', '20150331', 7, 7, 201, NULL),
(2014, 'Total', '20140131', '20150331', 7, 7, 321, NULL),
(2014, 'Closed', '20140131', '20150430', 7, 7, 231, NULL),
(2014, 'Total', '20140131', '20150430', 7, 7, 360, NULL),
(2014, 'Closed', '20140131', '20150531', 7, 7, 251, NULL),
(2014, 'Total', '20140131', '20150531', 7, 7, 386, NULL),
(2014, 'Closed', '20140131', '20150630', 7, 7, 283, NULL),
(2014, 'Total', '20140131', '20150630', 7, 7, 422, NULL),
(2014, 'Closed', '20140131', '20150731', 7, 7, 317, NULL),
(2014, 'Total', '20140131', '20150731', 7, 7, 452, NULL),
(2014, 'Closed', '20140131', '20150831', 7, 7, 346, NULL),
(2014, 'Total', '20140131', '20150831', 7, 7, 475, NULL),
(2014, 'Closed', '20140131', '20150930', 7, 7, 378, NULL),
(2014, 'Total', '20140131', '20150930', 7, 7, 486, NULL),
(2014, 'Closed', '20140131', '20151031', 7, 7, 405, NULL),
(2014, 'Total', '20140131', '20151031', 7, 7, 496, NULL),
(2014, 'Closed', '20140131', '20151130', 7, 7, 426, NULL),
(2014, 'Total', '20140131', '20151130', 7, 7, 501, NULL),
(2014, 'Closed', '20140131', '20151231', 7, 7, 448, NULL),
(2014, 'Total', '20140131', '20151231', 7, 7, 509, NULL),
(2014, 'Closed', '20140228', '20140131', 0, 2, 1, NULL),
(2014, 'Total', '20140228', '20140131', 0, 2, 5, NULL),
(2014, 'Closed', '20140228', '20140228', 0, 2, 2, NULL),
(2014, 'Total', '20140228', '20140228', 2, 2, 9, NULL),
(2014, 'Closed', '20140228', '20140331', 1, 2, 6, NULL),
(2014, 'Total', '20140228', '20140331', 2, 2, 11, NULL),
(2014, 'Closed', '20140228', '20140430', 2, 2, 8, NULL),
(2014, 'Total', '20140228', '20140430', 2, 2, 16, NULL),
(2014, 'Closed', '20140228', '20140531', 2, 2, 9, NULL),
(2014, 'Total', '20140228', '20140531', 2, 2, 33, NULL),
(2014, 'Closed', '20140228', '20140630', 2, 2, 15, NULL),
(2014, 'Total', '20140228', '20140630', 2, 2, 54, NULL),
(2014, 'Closed', '20140228', '20140731', 2, 2, 23, NULL),
(2014, 'Total', '20140228', '20140731', 2, 2, 78, NULL),
(2014, 'Closed', '20140228', '20140831', 2, 2, 48, NULL),
(2014, 'Total', '20140228', '20140831', 2, 2, 109, NULL),
(2014, 'Closed', '20140228', '20140930', 2, 2, 78, NULL),
(2014, 'Total', '20140228', '20140930', 2, 2, 136, NULL),
(2014, 'Closed', '20140228', '20141031', 2, 2, 94, NULL),
(2014, 'Total', '20140228', '20141031', 2, 2, 163, NULL),
(2014, 'Closed', '20140228', '20141130', 2, 2, 110, NULL),
(2014, 'Total', '20140228', '20141130', 2, 2, 187, NULL),
(2014, 'Closed', '20140228', '20141231', 2, 2, 128, NULL),
(2014, 'Total', '20140228', '20141231', 2, 2, 209, NULL),
(2014, 'Closed', '20140228', '20150131', 2, 2, 144, NULL),
(2014, 'Total', '20140228', '20150131', 2, 2, 240, NULL),
(2014, 'Closed', '20140228', '20150228', 2, 2, 167, NULL),
(2014, 'Total', '20140228', '20150228', 2, 2, 280, NULL),
(2014, 'Closed', '20140228', '20150331', 2, 2, 201, NULL),
(2014, 'Total', '20140228', '20150331', 2, 2, 321, NULL),
(2014, 'Closed', '20140228', '20150430', 2, 2, 231, NULL),
(2014, 'Total', '20140228', '20150430', 2, 2, 360, NULL),
(2014, 'Closed', '20140228', '20150531', 2, 2, 251, NULL),
(2014, 'Total', '20140228', '20150531', 2, 2, 386, NULL),
(2014, 'Closed', '20140228', '20150630', 2, 2, 283, NULL),
(2014, 'Total', '20140228', '20150630', 2, 2, 422, NULL),
(2014, 'Closed', '20140228', '20150731', 2, 2, 317, NULL),
(2014, 'Total', '20140228', '20150731', 2, 2, 452, NULL),
(2014, 'Closed', '20140228', '20150831', 2, 2, 346, NULL),
(2014, 'Total', '20140228', '20150831', 2, 2, 475, NULL),
(2014, 'Closed', '20140228', '20150930', 2, 2, 378, NULL),
(2014, 'Total', '20140228', '20150930', 2, 2, 486, NULL),
(2014, 'Closed', '20140228', '20151031', 2, 2, 405, NULL),
(2014, 'Total', '20140228', '20151031', 2, 2, 496, NULL),
(2014, 'Closed', '20140228', '20151130', 2, 2, 426, NULL),
(2014, 'Total', '20140228', '20151130', 2, 2, 501, NULL),
(2014, 'Closed', '20140228', '20151231', 2, 2, 448, NULL),
(2014, 'Total', '20140228', '20151231', 2, 2, 509, NULL);
SELECT Year,
ClaimStatus,
LossMonth,
MAX ( ClaimTotalPerLossMonth )
FROM #claimcount
GROUP BY Year,
ClaimStatus,
LossMonth;
SELECT *
FROM #claimcount;
DROP TABLE #claimcount;
I'm not sure that I understand your question correctly, but maybe you are looking for something like this:
SELECT x.Year, x.ClaimStatus, x.LossMonth,
SUM(MaxClaimTotalPerLossMonth) AS MaxClaimTotalPerLossMonth
FROM (
SELECT Year, ClaimStatus, LossMonth,
MAX ( ClaimTotalPerLossMonth ) AS MaxClaimTotalPerLossMonth
FROM #claimcount
GROUP BY Year, ClaimStatus, LossMonth
) x GROUP BY GROUPING SETS ((Year, ClaimStatus, LossMonth), (Year, ClaimStatus));
Just place what you calculate into a CTE and you can sum that up for the gran total:
;with t as(
SELECT Year,
ClaimStatus,
LossMonth,
MAX ( ClaimTotalPerLossMonth )MaxClaims
, sum(ClaimTotalPerLossMonth)ClaimCountPerLossYear
, sum(ClaimTotalPerClaimMonth)ClaimTotalPerClaimMonth
, sum(ClaimCount)ClaimCount
FROM #claimcount
GROUP BY Year,
ClaimStatus,
LossMonth
)
select * from t
union all
select 0,'GRAN TOTAL',NULL,sum(MaxClaims),sum(ClaimCountPerLossYear)
,sum(ClaimTotalPerClaimMonth),sum(ClaimCount)
from t

flutter: File download from server

I am downloading file from server but I don't know what happened so, kindly tell me how to solve this issue?
await Dio().post("https://test.blockchainhuissieray.com/api/download_file.php", data: {
"jwt" : token,
"fileID" : id,
"directory" : widget.folderName
},
options: Options(
contentType: ContentType.parse("application/json")
)).then((res) => res.data).then((data) async{
var intList = data.toString().codeUnits;
print('File : $intList');
print(data);
var filePath = await ImagePickerSaver.saveFile(fileData: Uint8List.fromList(intList));
print(filePath);
var savedFile = File.fromUri(Uri.file(filePath));
setState(() {
_imageFile = Future<File>.sync(() => savedFile);
images.add(File(data));
imagel = File(data);
});
}).catchError((err){print(err);});
print(images);
setState(() {
showDialog(
context: context,
builder: (context){
return AlertDialog(
content: Center(
child: Image.file(imagel,
fit: BoxFit.cover,),
),
);
}
);
});
I/flutter ( 6918): File : [65533, 65533, 65533, 65533, 2, 118, 69, 120, 105, 102, 0, 0, 77, 77, 0, 42, 0, 0, 0, 8, 0, 8, 1, 16, 0, 2, 0, 0, 0, 26, 0, 0, 0, 110, 1, 0, 0, 4, 0, 0, 0, 1, 0, 0, 3, 65533, 1, 1, 0, 4, 0, 0, 0, 1, 0, 0, 5, 0, 1, 50, 0, 2, 0, 0, 0, 20, 0, 0, 0, 65533, 1, 18, 0, 3, 0, 0, 0, 1, 0, 1, 0, 0, 65533, 105, 0, 4, 0, 0, 0, 1, 0, 0, 0, 65533, 65533, 37, 0, 4, 0, 0, 0, 1, 0, 0, 1, 65533, 1, 15, 0, 2, 0, 0, 0, 7, 0, 0, 0, 65533, 0, 0, 0, 0, 65, 110, 100, 114, 111, 105, 100, 32, 83, 68, 75, 32, 98, 117, 105, 108, 116, 32, 102, 111, 114, 32, 120, 56, 54, 0, 50, 48, 49, 57, 58, 48, 53, 58, 49, 55, 32, 49, 48, 58, 52, 54, 58, 48, 53, 0, 71, 111, 111, 103, 108, 101, 0, 0, 16, 65533, 65533, 0, 5, 0, 0, 0, 1, 0, 0, 1, 105, 65533, 65533, 0, 5, 0, 0, 0, 1, 0, 0, 1, 113, 65533, 65533, 0, 2, 0, 0, 0, 4, 52, 50, 54, 0, 65533, 65533, 0, 2, 0, 0, 0, 4, 52, 50, 54, 0, 65533, 65533, 0, 2, 0, 0, 0, 4, 52, 50, 54, 0, 65533, 10, 0, 5, 0, 0, 0, 1, 0, 0, 1, 121, 65533, 9, 0, 3, 0, 0, 0, 1, 0, 0, 0, 0, 65533, 39, 0, 3, 0, 0, 0, 1, 0,
I/flutter ( 6918): ����vExif
V/MediaStore( 6918): Create the thumbnail in memory: origId=266, kind=1, isVideo=false
D/skia ( 6918): --- Failed to create image decoder with message 'unimplemented'
I/chatty ( 6918): uid=10087(io.hexasoft.bch) identical 1 line
D/skia ( 6918): --- Failed to create image decoder with message 'unimplemented'
I/flutter ( 6918): saved filePath:
I/flutter ( 6918):
I/flutter ( 6918): [File: '����vExif
You may want to use the path_provider package instead of the ImagePicker plugin. Then write those raw bytes to a file in the temporary directory. Use the file path you generated from there and display the image that way. Or, if you don't need to save the image to the local storage you could display the image with the raw bytearray by using Image.memory instead of Image.file

SciPy: create a number sequence generator from constraints

I have been reading Probabilistic Programming and Bayesian Methods for Hackers and I'm hopeful that with PyMC3 I can create a number sequence generator. Here are 34 examples of the kind of number sequences I want to generate:
(20, [0, 0, 0, 4, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
(15, [0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
(9, [0, 0, 0, 4, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
(20, [0, 0, 0, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
(16, [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
(17, [0, 0, 0, 3, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 4, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
(14, [0, 0, 0, 1, 0, 0, 0, 3, 4, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
(13, [0, 0, 0, 5, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
(17, [0, 0, 0, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
(22, [0, 0, 0, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
(19, [0, 0, 0, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
(20, [0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 4, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
(15, [0, 0, 0, 5, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
(20, [0, 0, 0, 6, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
(13, [0, 0, 0, 1, 2, 2, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 4, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
(20, [0, 0, 0, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 5, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
(11, [0, 0, 0, 6, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
(21, [0, 0, 0, 5, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
(20, [0, 0, 0, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 3, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
(21, [0, 0, 0, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
(22, [0, 0, 0, 3, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
(23, [0, 0, 0, 4, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
(20, [0, 0, 0, 4, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
(24, [0, 0, 0, 1, 4, 6, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0])
(22, [0, 0, 0, 6, 1, 0, 0, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1])
(23, [0, 0, 0, 5, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
(22, [0, 0, 0, 2, 7, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
(22, [0, 0, 0, 6, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
(24, [0, 0, 0, 4, 5, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
(23, [0, 0, 0, 6, 5, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
(22, [0, 0, 0, 5, 3, 0, 3, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
(24, [0, 0, 0, 5, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
(23, [0, 0, 0, 1, 0, 0, 0, 0, 6, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
(21, [0, 0, 0, 4, 5, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
I'm trying to create a number sequence generator that, given the first number in the tuple (like 22), it produces a list of numbers that look like the second:
[0, 0, 0, 6, 1, 0, 0, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1]
I understand the constraints (the sum of the list equals the first number, some positions in the list are always zero, etc.) and I realize that I can create something like this:
import pymc as pm
tau = pm.DiscreteUniform("tau", lower=0, upper=22)
and then do something like this:
tau.random()
But I can't quite get how to construct the constraints and get it to output a list of numbers.
I'm not sure PyMC3 is the right tool here, unless you want to infer something about some hyperparameters -- supposing you store the count data you posted in a 34 x 89 numpy array, then the following suffices:
from scipy.stats import multinomial
import numpy as np
data = np.array([[0, 0, 0, 4, ...], ..., ])
p = data.sum(axis=1) / data.sum()
row_count = 22
number_of_samples = 10
samples = multinomial(row_count, p=p).rvs(number_of_samples)