Memcache Vs MongoDB for auto-complete - mongodb

We have RDBMS which also runs our auto-complete queries. I'm planning to reduce the load on RDBMS by re-directing auto-complete queries to MongoDB. The other option I have is use Memcache. The SQL queries are of nature "where lastName like 'abc%'. Can I query Memcache with Like clause? Also, my data will also be updated frequently so if I use Memcache, it needs to stay updated accordingly. Can anyone suggest if Memcache or any other cache is better over NoSQL? What are the advantages, if any, of using cache in this case and which one is preferred approach?

We had the same issue. Memcache is not the correct tool to do this as the data on Memcache is not persistent. And the number of permutations eventually become so huge that it does not make sense storing so much of data to Memcache.
We are using elasticsearch to handle auto suggest queries. It is extremely fast. It gives us most of the results in under 5ms.
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-suggesters-completion.html
You can Refer this link.
Let me know if you have any questions.

Related

Suitable db solution for high read rate

I'll explain the use cases first.
High read rates (10000+ p/s), large dataset (lots of string codes(think promocodes) looking for matchs, strings 10 - 20chars). Needs fast response time.
First thought was memcached. However to combat downtime if memcache goes down and starts repopulating the cache from a db like mysql.... i was thinking redis for auto repopulation of cache.
Is it true that redis does not persist to the hdd but instead a flush needs to be called for it to be backed up?
My hope is to use the code string as the key making lookup super quick. Value will be an id linking it to a db record thats not needed by the api.
If i had to guess how many unique strings will be stored..... 10M + after a few months.
Iv also looked at Cassandra briefly and mongodb. Im thinking mongodb will not be enough due to it not storing entire list in memory?
Any insight into these systems is very helpful. Feel like im going around in circles.
The api is made in nodejs. (If it matters)
10K/s is definitely not a high rate for a DB like Cassandra, according that your schema is done wisely. I bet it's the same for the others.
10M unique strings per months is peanuts for modern big data systems.
Whatever big data solution you retain, you will have to design the schema acording to the type of data and operational needs.
IMO, the important ones are the following 2 questions :
What you mean by "looking for matchs"?
If you need indexing and search using substrings or regexps, you need a search engine: ElasticSearch or SOLR are great. Warning that E/S does replication and sharding but it's distribution model is still not 100% safe.
None of the systems you mentionned will provide the reactivity you seem to look for.
If you will query using static strings: a key-value store or column oriented database like Cassandra will be just the perfect fit. So all are good fit.
What is a fast response time?
With selecting the right technology and appropriate schemas all those systems will give you great response time under hundreds of milliseconds, but will it be fast enough for you?
REDIS and MemCached being in-memory will provide the faster responses.
And as a conclusion, the API being in node.js is irrelevant for the choice of your storage and indexing technology, unless you want to stick with Javascript for everything and MongoDB is more friendly for you, it can be a decent candidate depending on your search use cases.

Memcaching sphinx results - good idea or bad idea?

We maintain a fairly large sphinx store. about 3.3 million records. we also maintain a fairly well distributed memcached base set over 4 servers.
We were just wondering if it is advisable to store sphinx results for various queries in memcached, which would be fairly easy to implement.
While I understand this can be a somewhat broad question, but just any general ideas?
Also worth mentioning, the memcached connection is always made in the script that accesses sphinx. total connection times (sphinx + memcached vs just memcached) could be improved. then again, all queries that do not result in a memcached hit would end up having to send a write to memcached.
So, would it be a good idea to store sphinx results in memcached for future use?
Thanks!
It is depends on your situation and on your needs. In your projects we had the same architecture, where memcache caches sphinx search results. But, in general, in our projects, it was minor chance that needed search query results are already in cache. That was about 10% of all queries because of large variety of queries and not guaranteed long-time storing data in memcache. Further more, sphinx usually searches very fast. So, we decided not to use cache in search.
So, you need to do tests. They will tell you.

NoSQL & AdHoc Queries - Millions of Rows

I currently run a MySQL-powered website where users promote advertisements and gain revenue every time someone completes one. We log every time someone views an ad ("impression"), every time a user clicks an add ("click"), and every time someone completes an ad ("lead").
Since we get so much traffic, we have millions of records in each of these respective tables. We then have to query these tables to let users see how much they have earned, so we end up performing multiple queries on tables with millions and millions of rows multiple times in one request, hundreds of times concurrently.
We're looking to move away from MySQL and to a key-value store or something along those lines. We need something that will let us store all these millions of rows, query them in milliseconds, and MOST IMPORTANTLY, use adhoc queries where we can query any single column, so we could do things like:
FROM leads WHERE country = 'US' AND user_id = 501 (the NoSQL equivalent, obviously)
FROM clicks WHERE ad_id = 1952 AND user_id = 200 AND country = 'GB'
etc.
Does anyone have any good suggestions? I was considering MongoDB or CouchDB but I'm not sure if they can handle querying millions of records multiple times a second and the type of adhoc queries we need.
Thanks!
With those requirements, you are probably better off sticking with SQL and setting up replication/clustering if you are running into load issues. You can set up indexing on a document database so that those queries are possible, but you don't really gain anything over your current system.
NoSQL systems generally improve performance by leaving out some of the more complex features of relational systems. This means that they will only help if your scenario doesn't require those features. Running ad hoc queries on tabular data is exactly what SQL was designed for.
CouchDB's map/reduce is incremental which means it only processes a document once and stores the results.
Let's assume, for a moment, that CouchDB is the slowest database in the world. Your first query with millions of rows takes, maybe, 20 hours. That sounds terrible. However, your second query, your third query, your fourth query, and your hundredth query will take 50 milliseconds, perhaps 100 including HTTP and network latency.
You could say CouchDB fails the benchmarks but gets honors in the school of hard knocks.
I would not worry about performance, but rather if CouchDB can satisfy your ad-hoc query requirements. CouchDB wants to know what queries will occur, so it can do the hard work up-front before the query arrives. When the query does arrive, the answer is already prepared and out it goes!
All of your examples are possible with CouchDB. A so-called merge-join (lots of equality conditions) is no problem. However CouchDB cannot support multiple inequality queries simultaneously. You cannot ask CouchDB, in a single query, for users between age 18-40 who also clicked fewer than 10 times.
The nice thing about CouchDB's HTTP and Javascript interface is, it's easy to do a quick feasibility study. I suggest you try it out!
Most people would probably recommend MongoDB for a tracking/analytic system like this, for good reasons. You should read the „MongoDB for Real-Time Analytics” chapter from the „MongoDB Definitive Guide” book. Depending on the size of your data and scaling needs, you could get all the performance, schema-free storage and ad-hoc querying features. You will need to decide for yourself if issues with durability and unpredictability of the system are risky for you or not.
For a simpler tracking system, Redis would be a very good choice, offering rich functionality, blazing speed and real durability. To get a feel how such a system would be implemented in Redis, see this gist. The downside is, that you'd need to define all the „indices” by yourself, not gain them for „free”, as is the case with MongoDB. Nevertheless, there's no free lunch, and MongoDB indices are definitely not a free lunch.
I think you should have a look into how ElasticSearch would enable you:
Blazing speed
Schema-free storage
Sharding and distributed architecture
Powerful analytic primitives in the form of facets
Easy implementation of „sliding window”-type of data storage with index aliases
It is in heart a „fulltext search engine”, but don't get yourself confused by that. Read the „Data Visualization with ElasticSearch and Protovis“ article for real world use case of ElasticSearch as a data mining engine.
Have a look on these slides for real world use case for „sliding window” scenario.
There are many client libraries for ElasticSearch available, such as Tire for Ruby, so it's easy to get off the ground with a prototype quickly.
For the record (with all due respect to #jhs :), based on my experience, I cannot imagine an implementation where Couchdb is a feasible and useful option. It would be an awesome backup storage for your data, though.
If your working set can fit in the memory, and you index the right fields in the document, you'd be all set. Your ask is not something very typical and I am sure with proper hardware, right collection design (denormalize!) and indexing you should be good to go. Read up on Mongo querying, and use explain() to test the queries. Stay away from IN and NOT IN clauses that'd be my suggestion.
It really depends on your data sets. The number one rule to NoSQL design is to define your query scenarios first. Once you really understand how you want to query the data then you can look into the various NoSQL solutions out there. The default unit of distribution is key. Therefore you need to remember that you need to be able to split your data between your node machines effectively otherwise you will end up with a horizontally scalable system with all the work still being done on one node (albeit better queries depending on the case).
You also need to think back to CAP theorem, most NoSQL databases are eventually consistent (CP or AP) while traditional Relational DBMS are CA. This will impact the way you handle data and creation of certain things, for example key generation can be come trickery.
Also remember than in some systems such as HBase there is no indexing concept. All your indexes will need to be built by your application logic and any updates and deletes will need to be managed as such. With Mongo you can actually create indexes on fields and query them relatively quickly, there is also the possibility to integrate Solr with Mongo. You don’t just need to query by ID in Mongo like you do in HBase which is a column family (aka Google BigTable style database) where you essentially have nested key-value pairs.
So once again it comes to your data, what you want to store, how you plan to store it, and most importantly how you want to access it. The Lily project looks very promising. The work I am involved with we take a large amount of data from the web and we store it, analyse it, strip it down, parse it, analyse it, stream it, update it etc etc. We dont just use one system but many which are best suited to the job at hand. For this process we use different systems at different stages as it gives us fast access where we need it, provides the ability to stream and analyse data in real-time and importantly, keep track of everything as we go (as data loss in a prod system is a big deal) . I am using Hadoop, HBase, Hive, MongoDB, Solr, MySQL and even good old text files. Remember that to productionize a system using these technogies is a bit harder than installing MySQL on a server, some releases are not as stable and you really need to do your testing first. At the end of the day it really depends on the level of business resistance and the mission-critical nature of your system.
Another path that no one thus far has mentioned is NewSQL - i.e. Horizontally scalable RDBMSs... There are a few out there like MySQL cluster (i think) and VoltDB which may suit your cause.
Again it comes to understanding your data and the access patterns, NoSQL systems are also Non-Rel i.e. non-relational and are there for better suit to non-relational data sets. If your data is inherently relational and you need some SQL query features that really need to do things like Cartesian products (aka joins) then you may well be better of sticking with Oracle and investing some time in indexing, sharding and performance tuning.
My advice would be to actually play around with a few different systems. However for your use case I think a Column Family database may be the best solution, I think there are a few places which have implemented similar solutions to very similar problems (I think the NYTimes is using HBase to monitor user page clicks). Another great example is Facebook and like, they are using HBase for this. There is a really good article here which may help you along your way and further explain some points above. http://highscalability.com/blog/2011/3/22/facebooks-new-realtime-analytics-system-hbase-to-process-20.html
Final point would be that NoSQL systems are not the be all and end all. Putting your data into a NoSQL database does not mean its going to perform any better than MySQL, Oracle or even text files... For example see this blog post: http://mysqldba.blogspot.com/2010/03/cassandra-is-my-nosql-solution-but.html
I'd have a look at;
MongoDB - Document - CP
CouchDB - Document - AP
Redis - In memory key-value (not column family) - CP
Cassandra - Column Family - Available & Partition Tolerant (AP)
HBase - Column Family - Consistent & Partition Tolerant (CP)
Hadoop/Hive - Also have a look at Hadoop streaming...
Hypertable - Another CF CP DB.
VoltDB - A really good looking product, a relation database that is distributed and might work for your case (may be an easier move). They also seem to provide enterprise support which may be more suited for a prod env (i.e. give business users a sense of security).
Any way thats my 2c. Playing around with the systems is really the only way your going to find out what really works for your case.

Is Memcache recommended when using MongoDB?

I would like to know if Memcache is recommended when using a NoSQL database like mongoDB.
The concept of using memcache stems from the idea that you have "extra RAM" sitting around somewhere. Both MongoDB and MySQL (and most DBs) will take every meg of RAM that they can get.
In the case of the very common MySQL / Memcache, it is very well documented that using Memcache is more about reducing query load on the server than it is about speeding up queries. A good memcache implementation basically just tries to keep the most common data in memory so that the database server can churn away on bigger stuff.
In fact, it's been my experience that use of memcache generally becomes a reliance on memcache to maintain system performance.
So back to the original question, where do you have extra RAM?
If you have extra RAM on web servers, you may be able to use Memcache. Of course, you could also run Mongo locally on the web server. Just slave the data you need from the master.
If you have extra RAM on other computers, then there's not really a point in using memcache. Just add more nodes to your MongoDB replica set or shard. This is where MongoDB actually shines. Because of sharding / replication, you can add more RAM to Mongo Horizontally to increase performance. With SQL it's very difficult to "just add more servers" because joins don't scale very well. But with Mongo, it's quite possible to simply "add more nodes" to a problem.
MongoDB stores everything in memory anyway and works in a similar vein, being a key-value based system, however I believe MongoDB is more flexible, as it allows for storing BSON objects within themselves.
(Just for clarification, MongoDB uses BSON, a specialised form of JSON, for storing all its data, which includes objects within objects.)
At first no. If you run into performance problems later add a caching layer (memcache). But you won't gain anything if you're going to use Redis for example, as Redis already stores everything in memory.
The answer would depend on your use cases.
In general, accessing RAM is orders of magnitude faster than accessing disk.
Even the fastest SSD drives are about 100 times slower to access than RAM.
Now, I don't know if Mongo has a caching system in place (most likely it does), or what the eviction policy is, but as a programmer i would prefer a cache where i can store/retrieve and delete items at will. Therefore i would prefer using a caching solution even with Mongo.
In summary, it really depends what you are using these solutions for. There is no one answer to cover all possible uses.

MongoDB vs. Redis vs. Cassandra for a fast-write, temporary row storage solution

I'm building a system that tracks and verifies ad impressions and clicks. This means that there are a lot of insert commands (about 90/second average, peaking at 250) and some read operations, but the focus is on performance and making it blazing-fast.
The system is currently on MongoDB, but I've been introduced to Cassandra and Redis since then. Would it be a good idea to go to one of these two solutions, rather than stay on MongoDB? Why or why not?
Thank you
For a harvesting solution like this, I would recommend a multi-stage approach. Redis is good at real time communication. Redis is designed as an in-memory key/value store and inherits some very nice benefits of being a memory database: O(1) list operations. For as long as there is RAM to use on a server, Redis will not slow down pushing to the end of your lists which is good when you need to insert items at such an extreme rate. Unfortunately, Redis can't operate with data sets larger than the amount of RAM you have (it only writes to disk, reading is for restarting the server or in case of a system crash) and scaling has to be done by you and your application. (A common way is to spread keys across numerous servers, which is implemented by some Redis drivers especially those for Ruby on Rails.) Redis also has support for simple publish/subscribe messenging, which can be useful at times as well.
In this scenario, Redis is "stage one." For each specific type of event you create a list in Redis with a unique name; for example we have "page viewed" and "link clicked." For simplicity we want to make sure the data in each list is the same structure; link clicked may have a user token, link name and URL, while the page viewed may only have the user token and URL. Your first concern is just getting the fact it happened and whatever absolutely neccesary data you need is pushed.
Next we have some simple processing workers that take this frantically inserted information off of Redis' hands, by asking it to take an item off the end of the list and hand it over. The worker can make any adjustments/deduplication/ID lookups needed to properly file the data and hand it off to a more permanent storage site. Fire up as many of these workers as you need to keep Redis' memory load bearable. You could write the workers in anything you wish (Node.js, C#, Java, ...) as long as it has a Redis driver (most web languages do now) and one for your desired storage (SQL, Mongo, etc.)
MongoDB is good at document storage. Unlike Redis it is able to deal with databases larger than RAM and it supports sharding/replication on it's own. An advantage of MongoDB over SQL-based options is that you don't have to have a predetermined schema, you're free to change the way data is stored however you want at any time.
I would, however, suggest Redis or Mongo for the "step one" phase of holding data for processing and use a traditional SQL setup (Postgres or MSSQL, perhaps) to store post-processed data. Tracking client behavior sounds like relational data to me, since you may want to go "Show me everyone who views this page" or "How many pages did this person view on this given day" or "What day had the most viewers in total?". There may be even more complex joins or queries for analytic purposes you come up with, and mature SQL solutions can do a lot of this filtering for you; NoSQL (Mongo or Redis specifically) can't do joins or complex queries across varied sets of data.
I currently work for a very large ad network and we write to flat files :)
I'm personally a Mongo fan, but frankly, Redis and Cassandra are unlikely to perform either better or worse. I mean, all you're doing is throwing stuff into memory and then flushing to disk in the background (both Mongo and Redis do this).
If you're looking for blazing fast speed, the other option is to keep several impressions in local memory and then flush them disk every minute or so. Of course, this is basically what Mongo and Redis do for you. Not a real compelling reason to move.
All three solutions (four if you count flat-files) will give you blazing fast writes. The non-relational (nosql) solutions will give you tunable fault-tolerance as well for the purposes of disaster recovery.
In terms of scale, our test environment, with only three MongoDB nodes, can handle 2-3k mixed transactions per second. At 8 nodes, we can handle 12k-15k mixed transactions per second. Cassandra can scale even higher. 250 reads is (or should be) no problem.
The more important question is, what do you want to do with this data? Operational reporting? Time-series analysis? Ad-hoc pattern analysis? real-time reporting?
MongoDB is a good option if you want the ability to do ad-hoc analysis based on multiple attributes within a collection. You can put up to 40 indexes on a collection, though the indexes will be stored in-memory, so watch for size. But the result is a flexible analytical solution.
Cassandra is a key-value store. You define a static column or set of columns that will act as your primary index right up front. All queries run against Cassandra should be tuned to this index. You can put a secondary on it, but that's about as far as it goes. You can, of course, use MapReduce to scan the store for non-key attribution, but it will be just that: a serial scan through the store. Cassandra also doesn't have the notion of "like" or regex operations on the server nodes. If you want to find all customers where the first name starts with "Alex", you'll have to scan through the entire collection, pull the first name out for each entry and run it through a client-side regex.
I'm not familiar enough with Redis to speak intelligently about it. Sorry.
If you are evaluating non-relational platforms, you might also want to consider CouchDB and Riak.
Hope this helps.
Just found this: http://blog.axant.it/archives/236
Quoting the most interesting part:
This second graph is about Redis RPUSH vs Mongo $PUSH vs Mongo insert, and I find this graph to be really interesting. Up to 5000 entries mongodb $push is faster even when compared to Redis RPUSH, then it becames incredibly slow, probably the mongodb array type has linear insertion time and so it becomes slower and slower. mongodb might gain a bit of performances by exposing a constant time insertion list type, but even with the linear time array type (which can guarantee constant time look-up) it has its applications for small sets of data.
I guess everything depends at least on data type and volume. Best advice probably would be to benchmark on your typical dataset and see yourself.
According to the Benchmarking Top NoSQL Databases (download here)
I recommend Cassandra.
If you have the choice (and need to move away from flat fies) I would go with Redis. Its blazingly fast, will comfortably handle the load you're talking about, but more importantly you won't have to manage the flushing/IO code. I understand its pretty straight forward but less code to manage is better than more.
You will also get horizontal scaling options with Redis that you may not get with file based caching.
I can get around 30k inserts/sec with MongoDB on a simple $350 Dell. If you only need around 2k inserts/sec, I would stick with MongoDB and shard it for scalability. Maybe also look into doing something with Node.js or something similar to make things more asynchronous.
The problem with inserts into databases is that they usually require writing to a random block on disk for each insert. What you want is something that only writes to disk every 10 inserts or so, ideally to sequential blocks.
Flat files are good. Summary statistics (eg total hits per page) can be obtained from flat files in a scalable manner using merge-sorty map-reducy type algorithms. It's not too hard to roll your own.
SQLite now supports Write Ahead Logging, which may also provide adequate performance.
I have hand-on experience with mongodb, couchdb and cassandra. I converted a lot of files to base64 string and insert these string into nosql.
mongodb is the fastest. cassandra is slowest. couchdb is slow too.
I think mysql would be much faster than all of them, but I didn't try mysql for my test case yet.