I am working on some Unit Testing Spark code which should be able to generate the difference between two dataframes(raw bucket and curated bucket). Both dataframes(buckets) are the same and we want to execute this code to capture the possible changes after we copy files from raw to curated. . I am aware that I can use except function as follow:
val difference =CuratedDataFrame.union(RawDataFrame).except(CuratedDataFrame.intersect(RawDataFrame))
+-----------+-------+-------------+---------+---------------+
|record |pid |feetype |freq |default |
+-----------+-------+-------------+---------+---------------+
| 1| 45| FAC| Y| T|
| 1| 45| FAC| Y| TTY|
| 1| 47| FAC| R| M|
| 1| 99| FAC| R| M|
+-----------+-------+-------------+---------+---------------+
The except function is returning the entire row but my desired output is as follow :
+-----------+-------+-------------+---------+---------------+
|record |pid |feetype |freq |default |
+-----------+-------+-------------+---------+---------------+
| null|[47,99]| null| null| null |
| null| null| null| null| [T, TTY]|
+----------+-----------+-------+-------------+---------+-----
It means if there is a change in column then it should appear if there is no change then it should be hidden or Null.
For doing this I am using the following approach :
val mapDiffs=(name: String) => when($"l.$name" === $"r.$name", null )
.otherwise(array($"l.$name", $"r.$name")).as(name)
val result = difference.as("l")
.join(RawDataFrame.as("r"), $"l.primaryKey" === $"r.primaryKey","inner")
.select($"l.primaryKey" :: cols.map(mapDiffs): _*)
The above approach requires primary key to be able to join both dataframes and compare them row by row. None of the dataframes have primary key so I had to combine some of the columns to specify a primary key :
+-----------+-------+-------------+---------+---------------+----------+
|record |pid |feetype |freq |default |primaryKey|
+-----------+-------+-------------+---------+---------------+----------+
| 1| 40| FAC| A| N| FAC40A|
| 1| 45| FAC| Y| T| FAC45Y|
| 1| 47| FAC| R| M| FAC47R|
+-----------+-------+-------------+---------+---------------+----------+
The problem is that if any changes happen in the target bucket, the primary key will be consequently changed so comparing both dataframes would be impossible.
Related
I want to eliminate some rows that only appear once in the ‘county’ column, which is not conducive to my statistics.
I used groupBy+count to find:
fault_data.groupBy("county").count().show()
The data looks like this:
+----------+-----+
| county|count|
+----------+-----+
| A| 117|
| B| 31|
| C| 1|
| D| 272|
| E| 1|
| F| 1|
| G| 280|
| H| 1|
| I| 1|
| J| 1|
| K| 112|
| L| 63|
| M| 18|
| N| 71|
| O| 1|
| P| 1|
| Q| 82|
| R| 2|
| S| 31|
| T| 2|
+----------+-----+
Next, I want to eliminate the data whose count is 1.
But when I wrote it like this, it was wrong:
fault_data.filter("count(county)=1").show()
The result is:
Aggregate/Window/Generate expressions are not valid in where clause of the query.
Expression in where clause: [(count(county) = CAST(1 AS BIGINT))]
Invalid expressions: [count(county)];
Filter (count(county#7) = cast(1 as bigint))
+- Relation [fault_id#0,fault_type#1,acs_way#2,fault_1#3,fault_2#4,province#5,city#6,county#7,town#8,detail#9,num#10,insert_time#11] JDBCRelation(fault_data) [numPartitions=1]
So I want to know the right way, thank you.
fault_data.groupBy("county").count().where(col("count")===1).show()
My goal is to aggregate over the customerID (count), create a new Column and mark the customer which return often an article. How can I do that? (using Databricks, pyspark)
train.select("itemID","customerID","returnShipment").show(10)
+------+----------+--------------+
|itemID|customerID|returnShipment|
+------+----------+--------------+
| 186| 794| 0|
| 71| 794| 1|
| 71| 794| 1|
| 32| 850| 1|
| 32| 850| 1|
| 57| 850| 1|
| 2| 850| 1|
| 259| 850| 1|
| 603| 850| 1|
| 259| 850| 1|
+------+----------+--------------+
You can define a threshold value and then compare this threshold value to the sum of returnShipments for each customerID:
from pyspark.sql import functions as F
threshold=5
df.groupBy("customerID")\
.sum("returnShipment") \
.withColumn("mark", F.col("sum(returnShipment)") > threshold) \
.show()
I have a dataset that has column userid and index values.
+---------+--------+
| userid | index|
+---------+--------+
| user1| 1|
| user2| 2|
| user3| 3|
| user4| 4|
| user5| 5|
| user6| 6|
| user7| 7|
| user8| 8|
| user9| 9|
| user10| 10|
+---------+--------+
I want to append a new data frame to it and add an index to the newly added columns.
The userid is unique and the existing data frame will not have the Dataframe 2 user ids.
+----------+
| userid |
+----------+
| user11|
| user21|
| user41|
| user51|
| user64|
+----------+
The expected output with newly added userid and index
+---------+--------+
| userid | index|
+---------+--------+
| user1| 1|
| user2| 2|
| user3| 3|
| user4| 4|
| user5| 5|
| user6| 6|
| user7| 7|
| user8| 8|
| user9| 9|
| user10| 10|
| user11| 11|
| user21| 12|
| user41| 13|
| user51| 14|
| user64| 15|
+---------+--------+
Is it possible to achive this by passing a max index value and start index for second Dataframe from given index value.
If the userid has some ordering, then you can use the rownumber function. Even if it does not have, then you can add an id using monotonically_increasing_id(). For now I assume that userid can be ordered. Then you can do this:
from pyspark.sql import functions as F
from pyspark.sql.window import Window
df_merge = df1.select('userid').union(df2.select('userid'))
w=Window.orderBy('userid')
df_result = df_merge.withColumn('indexid',F.row_number().over(w))
EDIT : After discussions in comment.
#%% Test data and imports
import pyspark.sql.functions as F
from pyspark.sql import Window
df = sqlContext.createDataFrame([('a',100),('ab',50),('ba',300),('ced',60),('d',500)],schema=['userid','index'])
df1 = sqlContext.createDataFrame([('fgh',100),('ff',50),('fe',300),('er',60),('fi',500)],schema=['userid','dummy'])
#%%
#%% Merge the two dataframes, with a null columns as the index
df1=df1.withColumn('index', F.lit(None))
df_merge = df.select(df.columns).union(df1.select(df.columns))
#%%Define a window to arrange the newly added rows at the last and order them by userid
#%% The user id, even though random strings, can be ordered
w= Window.orderBy(F.col('index').asc_nulls_last(),F.col('userid'))# if possible add a partition column here, otherwise all your data will come in one partition, consider salting
#%% For the newly added rows, define index as the maximum value + increment of number of rows in main dataframe
df_final = df_merge.withColumn("index_new",F.when(~F.col('index').isNull(),F.col('index')).otherwise((F.last(F.col('index'),ignorenulls=True).over(w))+F.sum(F.lit(1)).over(w)))
#%% If number of rows in main dataframe is huge, then add an offset in the above line
df_final.show()
+------+-----+---------+
|userid|index|index_new|
+------+-----+---------+
| ab| 50| 50|
| ced| 60| 60|
| a| 100| 100|
| ba| 300| 300|
| d| 500| 500|
| er| null| 506|
| fe| null| 507|
| ff| null| 508|
| fgh| null| 509|
| fi| null| 510|
+------+-----+---------+
I have a Spark data frame as shown below -
val myDF = Seq(
(1,"A",100,0,0),
(1,"E",200,0,0),
(1,"",300,1,49),
(2,"A",200,0,0),
(2,"C",300,0,0),
(2,"D",100,0,0)
).toDF("visitor","channel","timestamp","purchase_flag","amount")
scala> myDF.show
+-------+-------+---------+-------------+------+
|visitor|channel|timestamp|purchase_flag|amount|
+-------+-------+---------+-------------+------+
| 1| A| 100| 0| 0|
| 1| E| 200| 0| 0|
| 1| | 300| 1| 49|
| 2| A| 200| 0| 0|
| 2| C| 300| 0| 0|
| 2| D| 100| 0| 0|
+-------+-------+---------+-------------+------+
I would like to create Sequence dataframe for every visitor from myDF that traces a visitor's path to purchase ordered by timestamp dimension.
The output dataframe should look like below(-> can be any delimiter) -
+-------+---------------------+
|visitor|channel sequence |
+-------+---------------------+
| 1| A->E->purchase |
| 2| D->A->C->no_purchase|
+-------+---------------------+
To make things clear, visitor 2 has been exposed to channel D, then A and then C; and he does not make a purchase.
Hence the sequence is to be formed as D->A-C->no_purchase.
NOTE: Whenever a purchase happens, channel value goes blank and purchase_flag is set to 1.
I want to do this using a Scala UDF in Spark so that I re-apply the method on other datasets.
Here's how it is done using udf function
val myDF = Seq(
(1,"A",100,0,0),
(1,"E",200,0,0),
(1,"",300,1,49),
(2,"A",200,0,0),
(2,"C",300,0,0),
(2,"D",100,0,0)
).toDF("visitor","channel","timestamp","purchase_flag","amount")
import org.apache.spark.sql.functions._
def sequenceUdf = udf((struct: Seq[Row], purchased: Seq[Int])=> struct.map(row => (row.getAs[String]("channel"), row.getAs[Int]("timestamp"))).sortBy(_._2).map(_._1).filterNot(_ == "").mkString("->")+{if(purchased.contains(1)) "->purchase" else "->no_purchase"})
myDF.groupBy("visitor").agg(collect_list(struct("channel", "timestamp")).as("struct"), collect_list("purchase_flag").as("purchased"))
.select(col("visitor"), sequenceUdf(col("struct"), col("purchased")).as("channel sequence"))
.show(false)
which should give you
+-------+--------------------+
|visitor|channel sequence |
+-------+--------------------+
|1 |A->E->purchase |
|2 |D->A->C->no_purchase|
+-------+--------------------+
You can make it as much generic as you can . this is just a demo on how you should proceed
I have two dataframes like following.
val file1 = spark.read.format("csv").option("sep", ",").option("inferSchema", "true").option("header", "true").load("file1.csv")
file1.show()
+---+-------+-----+-----+-------+
| id| name|mark1|mark2|version|
+---+-------+-----+-----+-------+
| 1| Priya | 80| 99| 0|
| 2| Teju | 10| 5| 0|
+---+-------+-----+-----+-------+
val file2 = spark.read.format("csv").option("sep", ",").option("inferSchema", "true").option("header", "true").load("file2.csv")
file2.show()
+---+-------+-----+-----+-------+
| id| name|mark1|mark2|version|
+---+-------+-----+-----+-------+
| 1| Priya | 80| 99| 0|
| 2| Teju | 70| 5| 0|
+---+-------+-----+-----+-------+
Now I am comparing two dataframes and filtering out the mismatch values like this.
val columns = file1.schema.fields.map(_.name)
val selectiveDifferences = columns.map(col => file1.select(col).except(file2.select(col)))
selectiveDifferences.map(diff => {if(diff.count > 0) diff.show})
+-----+
|mark1|
+-----+
| 10|
+-----+
I need to add the extra row into the dataframe, 1 for the mismatch value from the dataframe 2 and update the version number like this.
file1.show()
+---+-------+-----+-----+-------+
| id| name|mark1|mark2|version|
+---+-------+-----+-----+-------+
| 1| Priya | 80| 99| 0|
| 2| Teju | 10| 5| 0|
| 3| Teju | 70| 5| 1|
+---+-------+-----+-----+-------+
I am struggling to achieve the above step and it is my expected output. Any help would be appreciated.
You can get your final dataframe by using except and union as following
val count = file1.count()
import org.apache.spark.sql.expressions._
import org.apache.spark.sql.functions._
file1.union(file2.except(file1)
.withColumn("version", lit(1)) //changing the version
.withColumn("id", (row_number.over(Window.orderBy("id")))+lit(count)) //changing the id number
)
lit, row_number and window functions are used to generate the id and versions
Note : use of window function to generate the new id makes the process inefficient as all the data would be collected in one executor for generating new id