Maintain N latest points in Postgres - postgresql

My purpose is to have N latest points in Postgres in one row. When a new point is added, remove the oldest point.
For example say I have N+1 points. 1 userid and N integers.
Now when a new integer comes for a user, I want to remove the oldest entry and add the new entry. Obviously the issue is performance here. Since I am adding only one new integer, I want some way to do it fast.
I tried one very naive way by keeping two columns
userid, json
where json was list of all integers. I would remove the first entry and append new entry and dump json in postgres. Undoubtedly it is not performing well.
Please suggest some good way to do it. Does Postgres has some min heap type of data structure which does it in much better than linear complexity?

Related

PostgreSQL - Compare ts_vector fields

I have two tables in which I have data coming from two different sources. One of the field of each table contains the title of a movie, but for some reason out of my control, the titles are not always exactly the same.
So I use the ts_vector to get rid of all the minor differences (stop words, plurals and so on).
See an example here: http://sqlfiddle.com/#!17/5ccbc/3
My problem is how to compare the two ts_vector without taking into account the numberic values, but just the text content. If I compare directly the two fields, I only get the exact match between values, including position of each word. The only solution I have found is using the strip() function, that remove positions and weights from tsvector, leaving only the text content.
I was wondering if there is a fastest way to compare ts_vectors.
You could create in index on the stripped vector:
create index on tbl1 (strip(ts_title));
create index on tbl2 (strip(ts_title));
But given that your query has to fetch every row of each table, it is unlikely this would serve much of a point. Doing a merge join between the precomputed stripped vectors could be faster, but probably not once you include the overhead of building and maintaining the indexes. If the real WHERE clause is more restrictive (selecting only a few rows from one or the other of the tables) then please share the real query.

Creating the optimum index for my database

I have a table in postgresql with the following information:
rawData (fileID integer references otherTable, lineNum integer, data1 double, ...)
When I am searching this table, I do so with the following query:
SELECT lineNum, data1, ...other data FROM rawData WHERE
fileID = ? AND data1 < ? ORDER BY lineNum;
In general, the data in this table is a number of entries for each fileID, and each fileID has lineNum from 0 to x, with lineNum never repeating for each fileID (but it does repeat for different fileID's). Then data1 is effectively a random number that may or may not overlap.
In order to speed up the reading of this data, I am trying to create an index on it, but am having trouble figuring out the best way to index it. Currently I am looking at one of the following two index methods, and am wondering which would be better for my search, or if there is another option that I haven't thought of that would be better than either of them.
index idea 1:
CREATE INDEX searchIndex ON rawData (fileID, data1, lineNum);
index idea 2:
CREATE INDEX searchIndex ON rawData (fileID, lineNum, data1);
Note that at this time, this and a search not constrained by data1 are the only searches that I run on this table, so I'm not too concerned about this index slowing down other searches.
Lastly, would I have to change my search query to use the index, or would it automatically use that index when I search the table?
You should look at using this instead:
CREATE INDEX searchIndex ON rawData (fileID, lineNum);
A few things:
In particular, as per docs, Indexes with more than three columns are unlikely to be helpful unless the usage of the table is extremely stylized.
Since your second search query requires filtering without the data1 column, keeping the second column lineNum should be sufficient (since you mention it would be quasi-random), and in the rare occurrence that there are repeats, table fetches should ensure correctness. But what this would mean is that the Index would be 1/3rd smaller in size, which is a big win (Think index small-enough to be in memory / index-only-scans etc.)
Either index can be used. Which is faster will depend on many things, like how many rows are in the table, how many lineNum there are per fileID, how selective the data1 < ? clause is, what your hardware is, what our config settings are, which version of PostreSQL you are using, what physical order the table rows lie in, etc.
The only way to know for sure is to try it with your own data on your own system and see.
I'd just build an index on (fileID, lineNum, data1), or even just (fileID, lineNum), because that seems more natural, and then forget about it. Most likely it will be fast enough. Once there is a demonstrable performance problem, than you will have the test case at hand which is needed to come to a real conclusion.

100 columns vs Array of length 100

I have a table with 100+ values corresponding to each row, so I'm exploring different ways to store them.
Without any indexes, would I lose anything if I store these 100 values in an integer[] column in postgresql? As compared to storing them in separate columns.
Plus, since we can add indexes to array elemnets,
CREATE INDEX test_index on test ((foo[1]));
Would there be a performance difference queries using such an index as compared to regular index on a column?
As far as I've read, this performance difference would come into picture in arrays with variable length elements; but I'm not sure about fixed length ones.
Don't go for the lazy way.
If you need to store 100 and more values as array, it is ok, if it has sense has array for your application, your data.
If you need to query for a specific element of the array, then this design is not good, regardless of performances, and you must use columns. This will help you in the moment you must delete a "column" in the middle or redesign it.
Anyway, as wrote by Frank in comments, if values are all same type, consider to model them to another table (if also the meaning is the same).

Efficient way of insert millions of rows, convert data and deal with it, on PostgreSQL+PostGIS

I have a big collection of data I want to use for user search later.
Currently I have 200 millions resources (~50GB). For each, I have latitude+longitude. The goal is to create spatial index to be able to do spatial queries on it.
So for that, the plan is to use PostgreSQL + PostGIS.
My data are on CSV file. I tried to use custom function to not insert duplicates, but after days of processing I gave up. I found a way to load it fast in the database: with COPY it takes less than 2 hours.
Then, I need to convert latitude+longitude on Geometry format. For that I just need to do:
ST_SetSRID(ST_MakePoint(longi::double precision,lat::double precision),4326))
After some checking, I saw that for 200 millions, I have 50 millions points. So, I think the best way is to have a table "TABLE_POINTS" that will store all the points, and a table "TABLE_RESOURCES" that will store resources with point_key.
So I need to fill "TABLE_POINTS" and "TABLE_RESOURCES" from temporary table "TABLE_TEMP" and not keeping duplicates.
For "POINTS" I did:
INSERT INTO TABLE_POINTS (point)
SELECT DISTINCT ST_SetSRID(ST_MakePoint(longi::double precision,lat::double precision),4326))
FROM TABLE_RESOURCES
I don't remember how much time it took, but I think it was matter of hours.
Then, to fill "RESOURCES", I tried:
INSERT INTO TABLE_RESOURCES (...,point_key)
SELECT DISTINCT ...,point_key
FROM TABLE_TEMP, TABLE_POINTS
WHERE ST_SetSRID(ST_MakePoint(longi::double precision,lat::double precision),4326) = point;
but again take days, and there is no way to see how far the query is ...
Also something important, the number of resources will continue to grow up, currently should be like 100K added by day, so storage should be optimized to keep fast access to data.
So if you have any idea for the loading or the optimization of the storage you are welcome.
Look into optimizing postgres first (ie google postgres unlogged, wal and fsync options), second do you really need points to be unique? Maybe just have one table with resources and points combined and not worry about duplicate points as it seems your duplicate lookup maybe whats slow.
For DISTINCT to work efficiently, you'll need a database index on those columns for which you want to eliminate duplicates (e.g. on the latitude/longitude columns, or even on the set of all columns).
So first insert all data into your temp table, then CREATE INDEX (this is usually faster that creating the index beforehand, as maintaining it during insertion is costly), and only afterwards do the INSERT INTO ... SELECT DISTINCT.
An EXPLAIN <your query> can tell you whether the SELECT DISTINCT now uses the index.

Cassandra CompositeType as row key Validator

I'm working on some POC.
I have the Column Family which stores server event. Avoiding to get row oversize we are splitting each row to N another rows using compositeType in row key:
CREATE COLUMN FAMILY logs with comparator='ReversedType(TimeUUIDType)' and key_validation_class='CompositeType(UTF8Type,IntegerType)' and default_validation_class=UTF8Type;
so for each server name we have N rows and we are writing data to each row using Very Simple Round Robin algorithm.
I have no problem to write data to any row:
Mutator<Composite> mutator = HFactory.createMutator(keySpace, CompositeSerializer.get());
HColumn<UUID,String> col =
HFactory.createColumn( TimeUUIDUtils.getUniqueTimeUUIDinMillis(), log);
Composite rowName = new Composite();
rowName.addComponent(serverName, StringSerializer.get());
rowName.addComponent(this.roundRobinDestributor.getRow(), IntegerSerializer.get());
mutator.insert(rowName, columnFamilyName, col);
}
So far so good, but now I have two quetions:
1) Due to the fact that if I want to get all logs for some serverName I would scan row keys, should I use ByteOrderedPartitioner?
2) Can any body help me, or point me on some help how to create Hector query which will bring all rows for server1 ( {server1:0}, {server1:1} {server1:2), etc...)? I saw a lot of example using CompositeType as comparator, but no example for key validator.
Any help or comment is highly appreciated.
First of all, row oversizing shouldn't be a problem in cassandra. Despite that, it might worth to spilt rows, since data distribution across cluster will be more even in this situation.
ByteOrderedPartitioner doesn't look like a good option here, since it would be hard to achieve uniform distribution of rows across cluster, that will lead to hotspots.
There's no way to query range of keys when using RandomPartitioner. However, if the maximum N value is reasonably small (up to 256) MultigetSliceQuery might be used to query whole set of rows.