Reshape vector with a step and window size - matlab

I have a vector, for example
A = [1 2 3 4 5 6 7 8]
I want to "reshape" it to matrix with windowsize=4 and stepsize=2, such that the resulting matrix is
b = [ 1 3 5;
2 4 6;
3 5 7;
4 6 8 ]

You can set up an indexing matrix, then just index into A...
A = [1 2 3 4 5 6 7 8];
windowsize = 4;
stepsize = 2;
% Implicit expansion to create a matrix of indices
idx = bsxfun( #plus, (1:windowsize).', 0:stepsize:(numel(A)-windowsize) );
b = A(idx);
Note; in this case idx and b are the same, but you need the final indexing step assuming A isn't just consecutive integers in your real example.

Related

Building matrices using column vector and matrix in matlab

I have a column vector A (6x1) with values [6 3 10 4 2 8]'; and a matrix B (6x5) with values
B = [1 2 3 0 4 ;
3 7 8 5 0 ;
0 9 1 0 1 ;
5 0 3 1 2 ;
4 6 7 6 4 ;
3 1 2 7 3]
I want to make five matrices with size 6x2 using Matlab.
The first column is vector A
The second column is columns from B, like [A, B(first col)], [A, B(second col)]
First matrix is [6 1; 3 3; 10 0; 4 5; 2 4; 8 3];
2nd matrix is [6 2; 3 7; 10 9; 4 0; 2 6; 8 1]
... and so on
Any help I really appreciate it
You could use a loop
C = NaN( size(B,1), 2, size(B,2) );
for ii = 1:size(B,2)
C(:,:,ii) = [A, B(:,ii)];
end
This gives you a 3D array, where each slice in the 3rd dimension is a 6x2 matrix (for this example) as desired. You would access the nth slice with C(:,:,n).
You can do this slightly more concisely with arrayfun, but it's basically a loop in disguise
C = arrayfun( #(ii) [A, B(:,ii)], 1:size(B,2), 'uni', 0 );
C = cat(3, C{:} );
You could omit the cat function if you're happy with results in a cell array, where you access the nth matrix with C{n}.
You could first make a copy of the columns of A, then concatenate A and B, and reshape:
At = repmat(A, 1, size(B,2));
C = reshape([At;B], 6, 2, []);
Or oneliner:
C = reshape([repmat(A, 1, size(B,2));B], 6, 2, []);
Then retrieve your matrices with C(:,:,k)
you can use this
first_matrix=[A,B(:,1)];
second_matrix=[A,B(:,2)];
third_matrix=[A,B(:,3)];
... and so on

permutation of separate rows of matrix

How to effectively vectorize the following MATLAB code, which performs permutation of each row of matrix R by indices in corresponding row of matrix P?
for i = 1:size(P,1)
pP(i,:) = R(i,P(i,:));
end
example:
P = [3 2 1;
3 1 2;
2 3 1;
2 1 3;
1 2 3;
1 3 2]
R = [6 5 4;
6 4 5;
5 6 4;
5 4 6;
4 5 6;
4 6 5]
produce following matrix pR:
4 5 6
5 6 4
6 4 5
4 5 6
4 5 6
4 5 6
One approach with bsxfun -
nrows = size(R,1)
pP = R(bsxfun(#plus,[1:nrows]',(P-1)*nrows))
Or with ndgrid -
[m,n] = size(R)
pP = R(sub2ind([m n],ndgrid(1:m,1:n),P))
Or replace ndgrid(1:m,1:n) with repmat: repmat([1:m]',[1 n]) or with meshgrid:meshgrid(1:m,1:n).'.
This might not be the best way to do it, but you could do something like:
IND1 = P(:,1)
Q(:,1) = diag(R(:,IND));
and repeat for P(:,2), P(:,3) in a similar fashion.
You can use arrayfun to avoid the loop but probably won't gain in performance if that it is the reason for vectorizing it:
cell2mat(arrayfun(#(k) R(k, P(k,:)), (1:size(P,1)).', 'uni', 0))

Got confused with a vector indexed by a matrix, in Matlab

The following codes runs in Matlab:
a = [1 2 3 4]
b = [ 1 2 3; 1 2 3; 1 2 3]
a(b)
The result of a(b) is a matrix:
[ 1 2 3; 1 2 3; 1 2 3]
Can anyone explain what happened here? Why a vector can be indexed by a matrix, how to interpret the result?
That's a very standard MATLAB operation that you're doing. When you have a vector or a matrix, you can provide another vector or matrix in order to access specific values. Accessing values in MATLAB is not just limited to single indices (i.e. A(1), A(2) and so on).
For example, what you have there is a vector of a = [1 2 3 4]. When you try to use b to access the vector, what you are essentially doing is a lookup. The output is basically the same size as b, and what you are doing is creating a matrix where there are 3 rows, and each element accesses the first, second and third element. Not only can you do this for a vector, but you can do this for a matrix as well.
Bear in mind that when you're doing this for a matrix, you access the elements in column major format. For example, supposing we had this matrix:
A = [1 2
3 4
5 6
7 8]
A(1) would be 1, A(2) would be 3, A(3) would be 5 and so on. You would start with the first column, and increasing indices will traverse down the first column. Once you hit the 5th index, it skips over to the next column. So A(5) would be 2, A(6) would be 4 and so on.
Here are some examples to further your understanding. Let's define a matrix A such that:
A = [5 1 3
7 8 0
4 6 2]
Here is some MATLAB code to strengthen your understanding for this kind of indexing:
A = [5 1 3; 7 8 0; 4 6 2]; % 3 x 3 matrix
B = [1 2 3 4];
C = A(B); % C should give [5 7 4 1]
D = [5 6 7; 1 2 3; 4 5 6];
E = A(D); % E should give [8 6 3; 5 7 4; 1 8 6]
F = [9 8; 7 6; 1 2];
G = A(F); % G should give [2 0; 3 6; 5 7]
As such, the output when you access elements this way is whatever the size of the vector or matrix that you specify as the argument.
In order to be complete, let's do this for a vector:
V = [-1 9 7 3 0 5]; % A 6 x 1 vector
B = [1 2 3 4];
C = V(B); % C should give [-1 9 7 3]
D = [1 3 5 2];
E = V(D); % E should give [-1 7 0 9]
F = [1 2; 4 5; 6 3];
G = V(F); % G should give [-1 9; 3 0; 5 7]
NB: You have to make sure that you are not providing indexes that would make the accessing out of bounds. For example if you tried to specify the index of 5 in your example, it would give you an error. Also, if you tried anything bigger than 9 in my example, it would also give you an error. There are 9 elements in that 3 x 3 matrix, so specifying a column major index of anything bigger than 9 will give you an out of bounds error.
Notice that the return value of a(b) is the same size as b.
a(b) simply takes each element of b, call it b(i,j), as an index and returns the outputs a(b(i,j)) as a matrix the same size as b. You should play around with other examples to get a more intuitive feel for this:
b = [4 4 4; 4 4 4];
a(b) % Will return [4 4 4; 4 4 4]
c = [5; 5];
a(c) % Will error as 5 is out of a's index range

Change order of rows in a matrix in MATLAB

I need to transform a matrix:
X = [1 2; 3 4; 5 6; 7 8]
X = 1 2
3 4
5 6
7 8
to
X = [1 2; 5 6; 3 4; 7 8]
X = 1 2
5 6
3 4
7 8
and do this operation for a matrix with any number of rows. So that in a matrix with 200 rows, row 101 will become row 2, row 102 will become row 4 and so on.
How can I achieve this in MATLAB?
For arrays with an even number of rows, you do the following:
nRows = size(X,1);
idx = [1:nRows/2;nRows/2+1:nRows];
X_rearranged = X(idx(:),:);
For arrays with odd number of rows, you add 1 to nRows, and use idx(1:end-1) instead of idx(:)
You can use:
X = [1 2; 3 4; 5 6; 7 8]
Y = [a(1,:); a(3,:); a(2,:); a(4,:)]

how to get values of a matrix in MATLAB where the indices are given in a nx2 array

I have a matrix A of size nRows x nCols.
I have a nx2 matrix B which contains indices of the matrix A.
I want to get the values of A at the indices given in B.
lets say,
B = [1, 2;
2, 3;
3, 4]
A(1,2) = 1
A(2,3) = 2
A(3,4) = 1
I want to know any Matlab command which gives the following, given A and B (I don't want to use loops):
[1 2 1]
I guess this is what you are looking for:
A(sub2ind(size(A),B(:,1),B(:,2)))
This is what you want:
A = [1,2; 3, 4; 5, 6; 7,8; 9,0]; % this is your N by 2 matrix
B = [1,1; 1,2; 2,1; 3, 1; 4,2]; % these are your indexes
A(sub2ind(size(A), B(:,1), B(:,2)))
A =
1 2
3 4
5 6
7 8
9 0
B =
1 1
1 2
2 1
3 1
4 2
ans =
1
2
3
5
8