Terraform - staggered provider population - kubernetes

I have been looking at implementing Kubernetes with Terraform over the past week and I seem to have a lifecycle issue.
While I can make a Kubernetes resource depend on a cluster being spun up, the KUBECONFIG file isn't updated in the middle of the terraform apply.
The kubernete
resource "kubernetes_service" "example" {
...
depends_on = ["digitalocean_kubernetes_cluster.example"]
}
resource "digitalocean_kubernetes_cluster" "example" {
name = "example"
region = "${var.region}"
version = "1.12.1-do.2"
node_pool {
name = "woker-pool"
size = "s-1vcpu-2gb"
node_count = 1
}
provisioner "local-exec" {
command = "sh ./get-kubeconfig.sh" // gets KUBECONFIG file from digitalocean API.
environment = {
digitalocean_kubernetes_cluster_id = "${digitalocean_kubernetes_cluster.k8s.id}"
digitalocean_kubernetes_cluster_name = "${digitalocean_kubernetes_cluster.k8s.name}"
digitalocean_api_token = "${var.digitalocean_token}"
}
}
While I can pull the CONFIG file down using the API, terraform won't use this file, because the terraform plan is already in motion
I've seen some examples using ternary operators (resource ? 1 : 0) but I haven't found a workaround for non count created clusters besides -target
Ideally, I'd like to create this with one terraform repo.

It turns out that the digitalocean_kubernetes_cluster resource has an attribute which can be passed to the provider "kubernetes" {} like so:
resource "digitalocean_kubernetes_cluster" "k8s" {
name = "k8s"
region = "${var.region}"
version = "1.12.1-do.2"
node_pool {
name = "woker-pool"
size = "s-1vcpu-2gb"
node_count = 1
}
}
provider "kubernetes" {
host = "${digitalocean_kubernetes_cluster.k8s.endpoint}"
client_certificate = "${base64decode(digitalocean_kubernetes_cluster.k8s.kube_config.0.client_certificate)}"
client_key = "${base64decode(digitalocean_kubernetes_cluster.k8s.kube_config.0.client_key)}"
cluster_ca_certificate = "${base64decode(digitalocean_kubernetes_cluster.k8s.kube_config.0.cluster_ca_certificate)}"
}
It results in one provider being dependant on the other, and acts accordingly.

Related

Kubernetes cluster unreachable when the vm_size was changed in azurerm_kubernetes_cluster

Terraform version
terraform {
required_providers {
azurerm = {
source = "hashicorp/azurerm"
version = "=3.16.0"
}
kubernetes = {
source = "hashicorp/kubernetes"
version = "=2.11.0"
}
helm = {
source = "hashicorp/helm"
version = "=2.6.0"
}
}
required_version = "=1.2.6"
}
Terraform Code
resource "azurerm_kubernetes_cluster" "my_cluster" {
name = local.cluster_name
location = azurerm_resource_group.rg.location
resource_group_name = azurerm_resource_group.rg.name
dns_prefix = local.dns_prefix
node_resource_group = local.resource_group_node_name
kubernetes_version = "1.24.3"
automatic_channel_upgrade = "patch"
sku_tier = var.sku_tier
default_node_pool {
name = "default"
type = "VirtualMachineScaleSets"
vm_size = var.default_pool_vm_size
enable_auto_scaling = true
max_count = var.default_pool_max_count
min_count = var.default_pool_min_count
os_disk_type = "Ephemeral"
os_disk_size_gb = var.default_pool_os_disk_size_gb
}
identity {
type = "SystemAssigned"
}
network_profile {
network_plugin = "kubenet"
}
}
provider "helm" {
kubernetes {
host = azurerm_kubernetes_cluster.my_cluster.kube_admin_config.0.host
client_certificate = base64decode(azurerm_kubernetes_cluster.my_cluster.kube_admin_config.0.client_certificate)
client_key = base64decode(azurerm_kubernetes_cluster.my_cluster.kube_admin_config.0.client_key)
cluster_ca_certificate = base64decode(azurerm_kubernetes_cluster.my_cluster.kube_admin_config.0.cluster_ca_certificate)
}
}
resource "helm_release" "argocd" {
name = "argocd"
repository = "https://argoproj.github.io/argo-helm"
chart = "argo-cd"
version = "4.10.5"
create_namespace = true
namespace = "argocd"
}
Steps to Reproduce
All resources were created successfully when I executed the terraform code at first time creation.
But it was failed on terraform plan when I changed the vm_size in default node pool.
$ terraform plan
Error: Kubernetes cluster unreachable: invalid configuration: no configuration has been provided, try setting KUBERNETES_MASTER environment variable
with helm_release.argocd,
│ on argocd.tf line 1, in resource "helm_release" "argocd":
│ 1: resource "helm_release" "argocd" {
Expected Behavior
The cluster should be reachable even the vm_size was changed.
Actual Behavior
Kubernetes cluster is unreachable for other terraform providers (ex: kubernetes, helm)
Test
I removed resource argocd to prevent the above situation, then terraform could plan and apply successfully.
I get the cluster config data from azure portal, the azurePortalFQDN is different between first time creation.
Question
Will The cluster be recreated if I change default node pool config which is commented “Changing this forces a new resource to be created” on terraform documents? Or only the default node pool will be deleted then create new one however the aks cluster doesn't changed?
Why provider helm could connect to the cluster at first time creation, but it was failed to connect when the resource recreation?
Thanks for your reply.

Automated .kube/config file created with Terraform GKE module doesn't work

We are using the below terraform module to create the GKE cluster and the local config file. But the kubectl command doesn't work. The terminal just keeps on waiting. Then we have to manually run the command gcloud container clusters get-credentials to fetch and set up the local config credentials post the cluster creation, and then the kubectl command works. It doesn't feel elegant to execute the gcloud command after the terraform setup. Therefore please help to correct what's wrong.
terraform {
required_providers {
google = {
source = "hashicorp/google"
version = ">= 3.42.0"
}
google-beta = {
source = "hashicorp/google-beta"
version = ">= 3.0.0"
}
}
}
provider "google" {
credentials = var.gcp_creds
project = var.project_id
region = var.region
zone = var.zone
}
provider "google-beta" {
credentials = var.gcp_creds
project = var.project_id
region = var.region
zone = var.zone
}
module "gke" {
source = "terraform-google-modules/kubernetes-engine/google//modules/beta-private-cluster"
project_id = var.project_id
name = "cluster"
regional = true
region = var.region
zones = ["${var.region}-a", "${var.region}-b", "${var.region}-c"]
network = module.vpc.network_name
subnetwork = module.vpc.subnets_names[0]
ip_range_pods = "gke-pod-ip-range"
ip_range_services = "gke-service-ip-range"
horizontal_pod_autoscaling = true
enable_private_nodes = true
master_ipv4_cidr_block = "${var.control_plane_cidr}"
node_pools = [
{
name = "node-pool"
machine_type = "${var.machine_type}"
node_locations = "${var.region}-a,${var.region}-b,${var.region}-c"
min_count = "${var.node_pools_min_count}"
max_count = "${var.node_pools_max_count}"
disk_size_gb = "${var.node_pools_disk_size_gb}"
auto_repair = true
auto_upgrade = true
},
]
}
# Configure the authentication and authorisation of the cluster
module "gke_auth" {
source = "terraform-google-modules/kubernetes-engine/google//modules/auth"
depends_on = [module.gke]
project_id = var.project_id
location = module.gke.location
cluster_name = module.gke.name
}
# Define a local file that will store the necessary info such as certificate, user and endpoint to access the cluster
resource "local_file" "kubeconfig" {
content = module.gke_auth.kubeconfig_raw
filename = "~/.kube/config"
}
UPDATE:
We found that the automated .kube/config file was created with the wrong public IP of the API Server whereas the one created with the gcloud command contains the correct IP of the API Server. Any guesses why terraform one is fetching the wrong public IP?

Managing GCP Composer Kubernetes cluster using Terraform

I've created a GCP Composer environment using Terraform:
terraform {
required_providers {
google = {
source = "hashicorp/google"
version = "3.5.0"
}
}
}
provider "google" {
credentials = file("my_key.json")
project = "my_project_id"
region = "us-east1"
zone = "us-east1-b"
}
resource "google_composer_environment" "my_composer_id" {
name = "my_composer_name"
region = "us-east1"
config {
node_count = 3
node_config {
zone = "us-east1-b"
machine_type = "n1-standard-1"
}
}
}
Composer also automatically creates a Kubernetes Engine cluster. Such cluster has a single node pool called default-pool. I'd like to create a new node pool inside the cluster created by Composer. Something like this:
resource "google_container_node_pool" "my_node_pool_id" {
name = "my_node_pool_name"
location = "us-east1"
cluster = ????
node_count = 0
node_config {
preemptible = true
machine_type = "n1-standard-1"
}
autoscaling {
min_node_count = 0
max_node_count = 3
}
}
However, as I didn't create the cluster in the Terraform file (as it was automatically created by Composer), I don't have the reference to it.
Cluster name can be accessed via the key gke_cluster available in the config section of your Cloud Composer environment :
resource "google_container_node_pool" "my_node_pool_id" {
name = "my_node_pool_name"
location = "us-east1-b"
cluster = element(
split("/",
lookup(
google_composer_environment.my_composer_id.config[0],
"gke_cluster"
)
),
5
)
// ...
}
The 5th element corresponds to the name of the GKE cluster.

Terraform to prevent forced updated of AWS EKS cluster

I am using terraform aws eks registry module
https://registry.terraform.io/modules/terraform-aws-modules/eks/aws/12.1.0?tab=inputs
Today with a new change to TF configs (unrelated to EKS) I saw that my EKS worker nodes are going to be rebuilt due to AMI updates which I am trying to prevent.
# module.kubernetes.module.eks-cluster.aws_launch_configuration.workers[0] must be replaced
+/- resource "aws_launch_configuration" "workers" {
~ arn = "arn:aws:autoscaling:us-east-2:555065427312:launchConfiguration:6c59fac6-5912-4079-8cc9-268a7f7fc98b:launchConfigurationName/edna-dev-eks-02020061119383942580000000b" -> (known after apply)
associate_public_ip_address = false
ebs_optimized = true
enable_monitoring = true
iam_instance_profile = "edna-dev-eks20200611193836418800000007"
~ id = "edna-dev-eks-02020061119383942580000000b" -> (known after apply)
~ image_id = "ami-05fc7ae9bc84e5708" -> "ami-073f227b0cd9507f9" # forces replacement
instance_type = "t3.medium"
+ key_name = (known after apply)
~ name = "edna-dev-eks-02020061119383942580000000b" -> (known after apply)
name_prefix = "edna-dev-eks-0"
security_groups = [
"sg-09b14dfce82015a63",
]
The rebuild happens because EKS got updated version of the AMI for worker nodes of the cluster.
This is my EKS terraform config
###################################################################################
# EKS CLUSTER #
# #
# This module contains configuration for EKS cluster running various applications #
###################################################################################
module "eks_label" {
source = "git::https://github.com/cloudposse/terraform-null-label.git?ref=master"
namespace = var.project
environment = var.environment
attributes = [var.component]
name = "eks"
}
data "aws_eks_cluster" "cluster" {
name = module.eks-cluster.cluster_id
}
data "aws_eks_cluster_auth" "cluster" {
name = module.eks-cluster.cluster_id
}
provider "kubernetes" {
host = data.aws_eks_cluster.cluster.endpoint
cluster_ca_certificate = base64decode(data.aws_eks_cluster.cluster.certificate_authority.0.data)
token = data.aws_eks_cluster_auth.cluster.token
load_config_file = false
version = "~> 1.9"
}
module "eks-cluster" {
source = "terraform-aws-modules/eks/aws"
cluster_name = module.eks_label.id
cluster_version = "1.16"
subnets = var.subnets
vpc_id = var.vpc_id
worker_groups = [
{
instance_type = var.cluster_node_type
asg_max_size = var.cluster_node_count
}
]
tags = var.tags
}
If I am trying to add lifecycle block in the module config
lifecycle {
ignore_changes = [image_id]
}
I get error:
➜ terraform plan
Error: Reserved block type name in module block
on modules/kubernetes/main.tf line 45, in module "eks-cluster":
45: lifecycle {
The block type name "lifecycle" is reserved for use by Terraform in a future
version.
Any ideas?
What about trying to use the worker_ami_name_filter variable for terraform-aws-modules/eks/aws to specifically find only your current AMI?
For example:
module "eks-cluster" {
source = "terraform-aws-modules/eks/aws"
cluster_name = module.eks_label.id
<...snip...>
worker_ami_name_filter = "amazon-eks-node-1.16-v20200531"
}
You can use AWS web console or cli to map the AMI IDs to their names:
user#localhost:~$ aws ec2 describe-images --filters "Name=name,Values=amazon-eks-node-1.16*" --region us-east-2 --output json | jq '.Images[] | "\(.Name) \(.ImageId)"'
"amazon-eks-node-1.16-v20200423 ami-01782c0e32657accf"
"amazon-eks-node-1.16-v20200531 ami-05fc7ae9bc84e5708"
"amazon-eks-node-1.16-v20200609 ami-073f227b0cd9507f9"
"amazon-eks-node-1.16-v20200507 ami-0edc51bc2f03c9dc2"
But why are you trying to prevent the Auto Scaling Group from using a newer AMI? It will only apply the newer AMI to new nodes. It won't terminate existing nodes just to update them.

Terraform: How to create a Kubernetes cluster on Google Cloud (GKE) with namespaces?

I'm after an example that would do the following:
Create a Kubernetes cluster on GKE via Terraform's google_container_cluster
... and continue creating namespaces in it, I suppose via kubernetes_namespace
The thing I'm not sure about is how to connect the newly created cluster and the namespace definition. For example, when adding google_container_node_pool, I can do something like cluster = "${google_container_cluster.hosting.name}" but I don't see anything similar for kubernetes_namespace.
In theory it is possible to reference resources from the GCP provider in K8S (or any other) provider in the same way you'd reference resources or data sources within the context of a single provider.
provider "google" {
region = "us-west1"
}
data "google_compute_zones" "available" {}
resource "google_container_cluster" "primary" {
name = "the-only-marcellus-wallace"
zone = "${data.google_compute_zones.available.names[0]}"
initial_node_count = 3
additional_zones = [
"${data.google_compute_zones.available.names[1]}"
]
master_auth {
username = "mr.yoda"
password = "adoy.rm"
}
node_config {
oauth_scopes = [
"https://www.googleapis.com/auth/compute",
"https://www.googleapis.com/auth/devstorage.read_only",
"https://www.googleapis.com/auth/logging.write",
"https://www.googleapis.com/auth/monitoring"
]
}
}
provider "kubernetes" {
host = "https://${google_container_cluster.primary.endpoint}"
username = "${google_container_cluster.primary.master_auth.0.username}"
password = "${google_container_cluster.primary.master_auth.0.password}"
client_certificate = "${base64decode(google_container_cluster.primary.master_auth.0.client_certificate)}"
client_key = "${base64decode(google_container_cluster.primary.master_auth.0.client_key)}"
cluster_ca_certificate = "${base64decode(google_container_cluster.primary.master_auth.0.cluster_ca_certificate)}"
}
resource "kubernetes_namespace" "n" {
metadata {
name = "blablah"
}
}
However in practice it may not work as expected due to a known core bug breaking cross-provider dependencies, see https://github.com/hashicorp/terraform/issues/12393 and https://github.com/hashicorp/terraform/issues/4149 respectively.
The alternative solution would be:
Use 2-staged apply and target the GKE cluster first, then anything else that depends on it, i.e. terraform apply -target=google_container_cluster.primary and then terraform apply
Separate out GKE cluster config from K8S configs, give them completely isolated workflow and connect those via remote state.
/terraform-gke/main.tf
terraform {
backend "gcs" {
bucket = "tf-state-prod"
prefix = "terraform/state"
}
}
provider "google" {
region = "us-west1"
}
data "google_compute_zones" "available" {}
resource "google_container_cluster" "primary" {
name = "the-only-marcellus-wallace"
zone = "${data.google_compute_zones.available.names[0]}"
initial_node_count = 3
additional_zones = [
"${data.google_compute_zones.available.names[1]}"
]
master_auth {
username = "mr.yoda"
password = "adoy.rm"
}
node_config {
oauth_scopes = [
"https://www.googleapis.com/auth/compute",
"https://www.googleapis.com/auth/devstorage.read_only",
"https://www.googleapis.com/auth/logging.write",
"https://www.googleapis.com/auth/monitoring"
]
}
}
output "gke_host" {
value = "https://${google_container_cluster.primary.endpoint}"
}
output "gke_username" {
value = "${google_container_cluster.primary.master_auth.0.username}"
}
output "gke_password" {
value = "${google_container_cluster.primary.master_auth.0.password}"
}
output "gke_client_certificate" {
value = "${base64decode(google_container_cluster.primary.master_auth.0.client_certificate)}"
}
output "gke_client_key" {
value = "${base64decode(google_container_cluster.primary.master_auth.0.client_key)}"
}
output "gke_cluster_ca_certificate" {
value = "${base64decode(google_container_cluster.primary.master_auth.0.cluster_ca_certificate)}"
}
Here we're exposing all the necessary configuration via outputs and use backend to store the state, along with these outputs in a remote location, GCS in this case. This enables us to reference it in the config below.
/terraform-k8s/main.tf
data "terraform_remote_state" "foo" {
backend = "gcs"
config {
bucket = "tf-state-prod"
prefix = "terraform/state"
}
}
provider "kubernetes" {
host = "https://${data.terraform_remote_state.foo.gke_host}"
username = "${data.terraform_remote_state.foo.gke_username}"
password = "${data.terraform_remote_state.foo.gke_password}"
client_certificate = "${base64decode(data.terraform_remote_state.foo.gke_client_certificate)}"
client_key = "${base64decode(data.terraform_remote_state.foo.gke_client_key)}"
cluster_ca_certificate = "${base64decode(data.terraform_remote_state.foo.gke_cluster_ca_certificate)}"
}
resource "kubernetes_namespace" "n" {
metadata {
name = "blablah"
}
}
What may or may not be obvious here is that cluster has to be created/updated before creating/updating any K8S resources (if such update relies on updates of the cluster).
Taking the 2nd approach is generally advisable either way (even when/if the bug was not a factor and cross-provider references worked) as it reduces the blast radius and defines much clearer responsibility. It's (IMO) common for such deployment to have 1 person/team responsible for managing the cluster and a different one for managing K8S resources.
There may certainly be overlaps though - e.g. ops wanting to deploy logging & monitoring infrastructure on top of a fresh GKE cluster, so cross provider dependencies aim to satisfy such use cases. For that reason I'd recommend subscribing to the GH issues mentioned above.