How to proof existence in COQ? - coq

I am quite new to Coq and I am trying to proof the following lemma (with the Reals library):
forall (An : nat -> R) (a : R), Un_cv An a -> Un_cv (fun i : nat => An i - a) 0.
Now, I get stuck when I try to find a suitable N such that for all n >= N the sequence converges. I know how to do it by hand, but I do not know how to program this into Coq.
This is my proof so far:
Proof.
intros An a A_cv.
unfold Un_cv. unfold Un_cv in A_cv.
intros eps eps_pos.
unfold R_dist. unfold R_dist in A_cv.
And I am left with:
1 subgoal
An : nat -> R
a : R
A_cv : forall eps : R,
eps > 0 -> exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n - a) < eps
eps : R
eps_pos : eps > 0
______________________________________(1/1)
exists N : nat, forall n : nat, (n >= N)%nat -> Rabs (An n - a - 0) < eps
And the problem is that I do not know how to get rid of the "exists N".
Is this even possible? And if it is, can anyone help me?
Thanks in advance!

Generally, to eliminate exists N in coq, you need to instantiate it with a term. If you were to write this out by hand, you would probably write something like, "since An converges, there is some N such that ..." and then you would use that N in your proof.
To do this in Coq, you will need to use the destruct tactic on A_cv. Once you have this N, you can use it to instantiate and continue like you'd expect.
Full proof for reference:
Lemma some_lemma : forall (An : nat -> R) (a : R), Un_cv An a -> Un_cv (fun i : nat => An i - a) 0.
Proof.
intros An a A_cv.
unfold Un_cv. unfold Un_cv in A_cv.
intros eps eps_pos.
unfold R_dist. unfold R_dist in A_cv.
destruct (A_cv eps eps_pos) as [N HN].
exists N; intro.
rewrite Rminus_0_r.
apply HN.
Qed.

Related

Z_3: left id proof

I am close to ending the proof for Z_3 left id. Here is what I have so far
Require Import Coq.Arith.PeanoNat.
Require Import Coq.Bool.Bool.
Require Import Coq.Logic.Eqdep_dec.
Record Z_3 : Type := Z3
{
n :> nat;
proof : (Nat.ltb n 3) = true
}.
Proposition lt_0_3 : (0 <? 3) = true.
Proof.
simpl. reflexivity.
Qed.
Definition z3_0 : Z_3 := (Z3 0 lt_0_3).
Proposition lt_1_3 : (1 <? 3) = true.
Proof.
reflexivity.
Qed.
Definition z3_1 : Z_3 := (Z3 1 lt_1_3).
Proposition lt_2_3 : (2 <? 3) = true.
Proof.
reflexivity.
Qed.
Definition z3_2 : Z_3 := (Z3 2 lt_2_3).
Proposition three_ne_0 : 3 <> 0.
Proof.
discriminate.
Qed.
Lemma mod_upper_bound_bool : forall (a b : nat), b <> O -> (a mod b <? b) = true.
Proof.
intros a b H. apply (Nat.mod_upper_bound a b) in H. case Nat.ltb_spec0.
- reflexivity.
- intros Hcontr. contradiction.
Qed.
Definition Z3_op (x y: Z_3) : Z_3 :=
let a := (x + y) mod 3 in
Z3 a (mod_upper_bound_bool _ 3 three_ne_0).
Lemma Z3_eq n m p q : n = m -> Z3 n p = Z3 m q.
Proof.
intros H. revert p q. rewrite H. clear H. intros. apply f_equal. apply UIP_dec. apply bool_dec.
Qed.
Proposition Z3_left_id' : forall x: Z_3, (Z3_op z3_0 x) = x.
Proof.
intro. unfold Z3_op. destruct x as [n proof]. apply Z3_eq.
Result:
1 subgoal (ID 46)
n : nat
proof : (n <? 3) = true
============================
(z3_0 + {| n := n; proof := proof |}) mod 3 = n
I found the following theorems that could be useful:
Nat.ltb_spec0
: forall x y : nat, reflect (x < y) (x <? y)
Nat.mod_small: forall a b : nat, a < b -> a mod b = a
Is it possible to get rid of profs in the goal, convert proof from bool to Prop, and then use Nat.mod_small?
Update
Proposition Z3_left_id' : forall x: Z_3, (Z3_op z3_0 x) = x.
Proof.
intro. unfold Z3_op. destruct x as [vx proof]. apply Z3_eq. unfold n, z3_0. rewrite plus_O_n. apply Nat.mod_small.
1 subgoal (ID 67)
vx : nat
proof : (vx <? 3) = true
============================
vx < 3
You need the coercion to execute. Unfortunately,
by naming the bound variable of your proof n and the projection from Z_3 to nat n, you painted yourself in a corner.
Here are four solutions:
1/ this one I mention just for the record: you can talk about the constant n that was defined in this file by using the file name as a module qualifier.
unfold user4035_oct_16.n.
user4035_oct_16 is the name of the current file, this is ugly.
2/ you could call a computation function that computes everything, however computation of modulo leaves unsightly terms in the goal, so you could decide to not compute that particular part.
cbn -[Nat.modulo].
I like this one, but it requires that you spend sometime learning how to use cbn.
3/ You can avoid the name clash by renaming variables in the goal.
rename n into m.
unfold n, Z3_0.
Not very nice either.
4/ Just go back in your script and replace destruct x as [n proof] with destruct x as [vx proof], then you can type:
unfold n, z3_0.
you will be able to use the lemmas you suggest.
Proof:
Proposition Z3_left_id : forall x: Z_3, (Z3_op z3_0 x) = x.
Proof.
intro. unfold Z3_op. destruct x as [vx proof]. apply Z3_eq. unfold n, z3_0. rewrite plus_O_n. apply Nat.mod_small. apply Nat.ltb_lt in proof. assumption.
Qed.

Stuck proving lemma with unprovable subgoals

I'm trying to prove a lemma that's based on the following definitions.
Section lemma.
Variable A : Type.
Variable P : A -> Prop.
Variable P_dec : forall x, {P x}+{~P x}.
Inductive vector : nat -> Type :=
| Vnil : vector O
| Vcons : forall {n}, A -> vector n -> vector (S n).
Arguments Vcons {_} _ _.
Fixpoint countPV {n: nat} (v : vector n): nat :=
match v with
| Vnil => O
| Vcons x v' => if P_dec x then S (countPV v') else countPV v'
end.
The lemma I'm trying to prove is as follows
Lemma lem: forall (n:nat) (a:A) (v:vector n),
S n = countPV (Vcons a v) -> (P a /\ n = countPV v).
I've tried a lot of things and currently I'm at this point.
Proof.
intros n a v.
unfold not in P_dec.
simpl.
destruct P_dec.
- intros.
split.
* exact p.
* apply eq_add_S.
exact H.
- intros.
split.
The context at this point:
2 subgoals
A : Type
P : A -> Prop
P_dec : forall x : A, {P x} + {P x -> False}
n : nat
a : A
v : vector n
f : P a -> False
H : S n = countPV v
______________________________________(1/2)
P a
______________________________________(2/2)
n = countPV v
My issue is that I seem to be stuck with two subgoals that I can not prove and the available context does not seem to be helpful. Can anyone provide me with some pointers to move on?
EDIT:
I've proven the lemma by contradicting H:
assert (countPV v <= n).
* apply countNotBiggerThanConstructor.
* omega.
Qed.
where countNotBiggerThanConstructor is:
Lemma countNotBiggerThanConstructor: forall {n : nat} (v: vector n), countPV v <= n.
Proof.
intros n v.
induction v.
- reflexivity.
- simpl.
destruct P_dec.
+ apply le_n_S in IHv.
assumption.
+ apply le_S.
assumption.
Qed.
Notice that H can't possibly be true. That is a good thing, if you can prove False, you can prove anything. So I would do contradict H next (and you don't need that last split).
Overall your proof seems a little messy to me. I suggest thinking about how you would prove this lemma on paper and trying to do that in Coq. I am not an expert in Coq, but I think it would also help you realize, that you need to use contradiction in this case.
(Edit: BTW other answers suggesting that this lemma does not hold are wrong, but I can't comment with my 1 reputation)

Minimum in non-empty, finite set

With the following definitions I want to prove lemma without_P
Variable n : nat.
Definition mnnat := {m : nat | m < n}.
Variable f : mnnat -> nat.
Lemma without_P : (exists x : mnnat, True) -> (exists x, forall y, f x <= f y).
Lemma without_P means: if you know (the finite) set mnnat is not empty, then there must exist an element in mnnat, that is the smallest of them all, after mapping f onto mnnat.
We know mnnat is finite, as there are n-1 numbers in it and in the context of the proof of without_P we also know mnnat is not empty, because of the premise (exists x : mnnat, True).
Now mnnat being non-empty and finite "naturally/intuitively" has some smallest element (after applying f on all its elements).
At the moment I am stuck at the point below, where I thought to proceed by induction over n, which is not allowed.
1 subgoal
n : nat
f : mnnat -> nat
x : nat
H' : x < n
______________________________________(1/1)
exists (y : nat) (H0 : y < n),
forall (y0 : nat) (H1 : y0 < n),
f (exist (fun m : nat => m < n) y H0) <= f (exist (fun m : nat => m < n) y0 H1)
My only idea here is to assert the existance of a function f' : nat -> nat like this: exists (f' : nat -> nat), forall (x : nat) (H0: x < n), f' (exist (fun m : nat => m < n) x H0) = f x, after solving this assertion I have proven the lemma by induction over n. How can I prove this assertion?
Is there a way to prove "non-empty, finite sets (after applying f to each element) have a minimum" more directly? My current path seems too hard for my Coq-skills.
Require Import Psatz Arith. (* use lia to solve the linear integer arithmetic. *)
Variable f : nat -> nat.
This below is essentially your goal, modulo packing of the statement into some dependent type. (It doesn't say that mi < n, but you can extend the proof statement to also contain that.)
Goal forall n, exists mi, forall i, i < n -> f mi <= f i.
induction n; intros.
- now exists 0; inversion 1. (* n cant be zero *)
- destruct IHn as [mi IHn]. (* get the smallest pos mi, which is < n *)
(* Is f mi still smallest, or is f n the smallest? *)
(* If f mi < f n then mi is the position of the
smallest value, otherwise n is that position,
so consider those two cases. *)
destruct (lt_dec (f mi) (f n));
[ exists mi | exists n];
intros.
+ destruct (eq_nat_dec i n).
subst; lia.
apply IHn; lia.
+ destruct (eq_nat_dec i n).
subst; lia.
apply le_trans with(f mi).
lia.
apply IHn.
lia.
Qed.
Your problem is an specific instance of a more general result which is proven for example in math-comp. There, you even have a notation for denoting "the minimal x such that it meets P", where P must be a decidable predicate.
Without tweaking your statement too much, we get:
From mathcomp Require Import all_ssreflect.
Variable n : nat.
Variable f : 'I_n.+1 -> nat.
Lemma without_P : exists x, forall y, f x <= f y.
Proof.
have/(_ ord0)[] := arg_minP (P:=xpredT) f erefl => i _ P.
by exists i => ?; apply/P.
Qed.
I found a proof to my assertion (exists (f' : nat -> nat), forall (x : nat) (H0: x < n), f (exist (fun m : nat => m < n) x H0) = f' x). by proving the similar assertion (exists (f' : nat -> nat), forall x : mnnat, f x = f' (proj1_sig x)). with Lemma f'exists. The first assertion then follows almost trivially.
After I proved this assertion I can do a similar proof to user larsr, to prove Lemma without_P.
I used the mod-Function to convert any nat to a nat smaller then n, apart from the base case of n = 0.
Lemma mod_mnnat : forall m,
n > 0 -> m mod n < n.
Proof.
intros.
apply PeanoNat.Nat.mod_upper_bound.
intuition.
Qed.
Lemma mod_mnnat' : forall m,
m < n -> m mod n = m.
Proof.
intros.
apply PeanoNat.Nat.mod_small.
auto.
Qed.
Lemma f_proj1_sig : forall x y,
proj1_sig x = proj1_sig y -> f x = f y.
Proof.
intros.
rewrite (sig_eta x).
rewrite (sig_eta y).
destruct x. destruct y as [y H0].
simpl in *.
subst.
assert (l = H0).
apply proof_irrelevance. (* This was tricky to find.
It means two proofs of the same thing are equal themselves.
This makes (exist a b c) (exist a b d) equal,
if c and d prove the same thing. *)
subst.
intuition.
Qed.
(* Main Lemma *)
Lemma f'exists :
exists (ff : nat -> nat), forall x : mnnat, f x = ff (proj1_sig x).
Proof.
assert (n = 0 \/ n > 0).
induction n.
auto.
intuition.
destruct H.
exists (fun m : nat => m).
intuition. destruct x. assert (l' := l). rewrite H in l'. inversion l'.
unfold mnnat in *.
(* I am using the mod-function to map (m : nat) -> {m | m < n} *)
exists (fun m : nat => f (exist (ltn n) (m mod n) (mod_mnnat m H))).
intros.
destruct x.
simpl.
unfold ltn.
assert (l' := l).
apply mod_mnnat' in l'.
assert (proj1_sig (exist (fun m : nat => m < n) x l) = proj1_sig (exist (fun m : nat => m < n) (x mod n) (mod_mnnat x H))).
simpl. rewrite l'.
auto.
apply f_proj1_sig in H0.
auto.
Qed.

Rewrite under exists

Say I have the following relation:
Inductive my_relation: nat -> Prop :=
constr n: my_relation n.
and I want to prove the following:
Lemma example:
(forall n, my_relation n -> my_relation (S n)) -> (exists n, my_relation n) -> exists n, my_relation (S n).
Proof.
intros.
After introducing, I have the following environment:
1 subgoal
H : forall n : nat, my_relation n -> my_relation (S n)
H0 : exists n : nat, my_relation n
______________________________________(1/1)
exists n : nat, my_relation (S n)
My question is: is there a possibility to rewrite H under the exists quantifier ? If not, is there a strategy to solve this kind of problem (this particular one is not really relevant, but problems where you have to prove an exists using another exists, and where, informally, you can « deduce » a way to rewrite the exists in the hypothesis into the exists in the goal) ?
For instance, if I try rewrite H in H0. I have, an error (Error: Cannot find a relation to rewrite.).
The standard way to manipulate an existential quantification in an hypothesis is to get a witness of the property using inversion or, better and simpler, destruct.
You can give a name to the variable using one of the following syntaxes:
destruct H0 as (n, H0).
destruct H0 as [n H0].
destruct H0 as (n & H0).
Note that you can also destruct an hypothesis using intro-patterns.
intros H (n & H0).
And you can even directly apply H in H0.
intros H (n & H0%H). exists n. assumption.
Software Foundations explains this in a clear way.
I found a way, I post it here for any similar questions in the future.
It is possible to inverse the exists hypothesis, in order to "instantiate" the quantified variable, for instance, here, the proof can be finished by:
inversion H0.
apply H in H1.
exists x.
apply H1.
Qed.
After inversion H0, we have in the environment:
1 subgoal
H : forall n : nat, my_relation n -> my_relation (S n)
H0 : exists n : nat, my_relation n
x : nat
H1 : my_relation x
______________________________________(1/1)
exists n : nat, my_relation (S n)
and we can now work with x.

Proving increasing iota in Coq

I am stuck on a goal.
Assume we have the following definition:
Fixpoint iota (n : nat) : list nat :=
match n with
| 0 => []
| S k => iota k ++ [k]
end.
And we want to prove:
Theorem t1 : forall n, In n (iota n) -> False.
So far, I have managed to the following:
Theorem t1 : forall n, In n (iota n) -> False.
Proof.
intros.
induction n.
- cbn in H. contradiction.
- cbn in H. apply app_split in H.
Focus 2. unfold not. intros.
unfold In in H0. destruct H0. assert (~(n = S n)) by now apply s_inj.
contradiction.
apply H0.
apply IHn.
I used these two lemmas, proofs omitted:
Axiom app_split : forall A x (l l2 : list A), In x (l ++ l2) -> not (In x l2) -> In x l.
Axiom s_inj : forall n, ~(n = S n).
However, I am completely stuck, I need to somehow show that: In n (iota n) assuming In (S n) (iota n).
As you've observed the fact that the n in In n and the one in iota n are in lockstep in your statement makes the induction hypothesis hard to invoke (if not completely useless).
The trick here is to prove a more general statement than the one you are actually interested in which breaks this dependency between the two ns. I would suggest:
Theorem t : forall n k, n <= k -> In k (iota n) -> False.
from which you can derive t1 as a corollary:
Corollary t1 : forall n, In n (iota n) -> False.
intro n; apply (t n n); reflexivity.
Qed.
If you want to peek at the proof of t, you can have a look at this self-contained gist