How to retain state in Rx without the scan function - swift

I'm working on porting some of my View Models into (rough) Finite State Machines as my UI tends to fit that pattern rather well (Mealy/Moore, don't care for the purpose of this question). Additionally, when done well - state machines really clean up testing - as they prohibit certain test permutations from ever happening.
My current view models use RxSwift (and RxKotlin - depending on the app), and the underlying use cases (database calls, network calls, etc) also use Rx (hence why I need to stay in that ecosystem).
What I've discovered is that Rx is awesome, State Machines are awesome --> Rx + State Machines seem to be a bit of a hash to do anything non-trivial. For example, I know I can use the .scan operator to retain some state, IF my state machine was entirely synchronous (for example, something roughly like this in Swift):
enum Event {
case event1
case event2
case event3
}
enum State {
case state1
case state2
case state3
func on(event: Event) -> State {
switch (self, event) {
case (.state1, .event1):
// Do something
return .state2
case (.state2, .event2):
// Do something
return .state3
default:
return self // (or nil, or something)
}
}
}
func foo() -> Observable<State> {
let events = Observable<Event>.of(.event1, .event2, .event3)
return events.scan(State.state1) { (currentState, event) -> State in
return currentState.on(event)
}
}
But, what can I do if the return from my State.on function is an Observable (like a network call or something that takes a long time, which is already in Rx)?
enum State {
case notLoggedIn
case loggingIn
case loggedIn
case error
func on(event: Event) -> Observable<State> {
switch (self, event) {
case (.notLoggedIn, .event1):
return api.login(credentials)
.map({ (isLoggedIn) -> State in
if isLoggedIn {
return .loggedIn
}
return .error
})
.startWith(.loggingIn)
... other code ...
default:
return self
}
}
}
I've tried making the .scan operator take in an Observable accumulator, but the result of this code is that the state machine is subscribed to or run too many times. I guess because it runs on each state in the observable that is accumulating.
return events.scan(Observable.just(State.state1)) { (currentState, event) -> Observable<State> in
currentState.flatMap({ (innerState) -> Observable<State> in
return innerState.on(event: event)
})
}.flatMap { (states) -> Observable<State> in
return states
}
I think, if I could manage to cleanly pull the state variable back in, the simplest implementation could look like this:
return events.flatMapLatest({ (event) -> Observable<State> in
return self.state.on(event: event)
.do(onNext: { (state) in
self.state = state
})
})
But, pulling from a private state variable into an observable stream, and updating it - well, not only is it ugly, I feel like I'm just waiting to be hit by a concurrency bug.
Edit: Based on feedback from Sereja Bogolubov - I've added a Relay and come up with this code - still not great, but getting there.
let relay = BehaviorRelay<State>(value: .initial)
...
func transition(from state: State, on event: Event) -> Observable<State> {
switch (state, event) {
case (.notLoggedIn, .event1):
return api.login(credentials)
.map({ (isLoggedIn) -> State in
if isLoggedIn {
return .loggedIn
}
return .error
})
.startWith(.loggingIn)
... other code ...
default:
return self
}
}
return events.withLatestFrom(relay.asObservable(), resultSelector: { (event, state) -> Observable<State> in
return self.transition(from: state, on: event)
.do(onNext: { (state) in
self.relay.accept(state)
})
}).flatMap({ (states) -> Observable<State> in
return states
})
The relay (or replay subject or whatever) is updated in a doOnNext from the result of the state transition... This still feels like it could cause a concurrency problem, but not sure what else would work.

No, you don't have to be entirely sync to maintain arbitrary complex state.
Yes, there are ways to achive needed behavior without scan. How about the withLatestFrom, where other is your current state (i.e. a separate Observable<MyState>, but you would need ReplaySubject<MyState> under the hood).
Let me know if you need more details.
Proof of concept, javascript:
const source = range(0, 10);
const state = new ReplaySubject(1);
const example = source.pipe(
withLatestFrom(state), // that's the way you read actual state
map(([n, currentState]) => {
state.next(n); // that's the way you change the state
return ...
})
);
Please be aware that more sophisticated cases (like race conditions risky) might require something at least as complex as combineLatest and approp. Scheduler's in place.

I think Elm's system can come in handy here. In Elm, the reducer that you pass into the system doesn't just return state, it also returns a "command" which in our case would be a Observable<Event> (not an RxSwift.Event, but your Event enum.) This command isn't stored in the scan's state, but rather it is subscribed to outside the scan and its output is fed back into the scan (through a Subject of some sort.) Tasks that require cancelling would observe the current state and start and stop operation based on the state.
There are several libraries in the RxSwift ecosystem that help simplify these sort of things. The two primary ones are, ReactorKit and RxFeedback. And there are several others...
For a simple example of what I'm talking about, check out this gist. This sort of system allows your Moore machine to fire off an action upon entering a state which could potentially cause 0..n new input events.

Related

Repeat Single based on onSuccess() value

I want to repeat a Single based on the single value emitted in onSuccess(). Here is a working example
import org.reactivestreams.Publisher;
import io.reactivex.Flowable;
import io.reactivex.Single;
import io.reactivex.functions.Function;
public class Temp {
void main() {
Job job = new Job();
Single.just(job)
.map(this::processJob)
.repeatWhen(new Function<Flowable<Object>, Publisher<?>>() {
#Override
public Publisher<?> apply(Flowable<Object> objectFlowable) throws Exception {
// TODO repeat when Single emits false
return null;
}
})
.subscribe();
}
/**
* returns true if process succeeded, false if failed
*/
boolean processJob(Job job) {
return true;
}
class Job {
}
}
I understand how repeatWhen works for Observables by relying on the "complete" notification. However since Single doesn't receive that notification I'm not sure what the Flowable<Object> is really giving me. Also why do I need to return a Publisher from this function?
Instead of relying on a boolean value, you could make your job throw an exception when it fails:
class Job {
var isSuccess: Boolean = false
}
fun processJob(job: Job): String {
if (job.isSuccess) {
return "job succeeds"
} else {
throw Exception("job failed")
}
}
val job = Job()
Single.just(job)
.map { processJob(it) }
.retry() // will resubscribe until your job succeeds
.subscribe(
{ value -> print(value) },
{ error -> print(error) }
)
i saw a small discrepancy in the latest docs and your code, so i did a little digging...
(side note - i think the semantics of retryWhen seem like the more appropriate operator for your case, so i've substituted it in for your usage of repeatWhen. but i think the root of your problem remains the same in either case).
the signature for retryWhen is:
retryWhen(Function<? super Flowable<Throwable>,? extends Publisher<?>> handler)
that parameter is a factory function whose input is a source that emits anytime onError is called upstream, giving you the ability to insert custom retry logic that may be influenced through interrogation of the underlying Throwable. this begins to answer your first question of "I'm not sure what the Flowable<Object> is really giving me" - it shouldn't be Flowable<Object> to begin with, it should be Flowable<Throwable> (for the reason i just described).
so where did Flowable<Object> come from? i managed to reproduce IntelliJ's generation of this code through it's auto-complete feature using RxJava version 2.1.17. upgrading to 2.2.0, however, produces the correct result of Flowable<Throwable>. so, see if upgrading to the latest version generates the correct result for you as well.
as for your second question of "Also why do I need to return a Publisher from this function?" - this is used to determine if re-subscription should happen. if the factory function returns a Publisher that emits a terminal state (ie calls onError() or onComplete()) re-subscription will not happen. however, if onNext() is called, it will. (this also explains why the Publisher isn't typed - the type doesn't matter. the only thing that does matter is what kind of notification it publishes).
another way to rewrite this, incorporating the above, might be as follows:
// just some type to use as a signal to retry
private class SpecialException extends RuntimeException {}
// job processing results in a Completable that either completes or
// doesn't (by way of an exception)
private Completable rxProcessJob(Job job) {
return Completable.complete();
// return Completable.error(new SpecialException());
}
...
rxProcessJob(new Job())
.retryWhen(errors -> {
return errors.flatMap(throwable -> {
if(throwable instanceof SpecialException) {
return PublishProcessor.just(1);
}
return PublishProcessor.error(throwable);
});
})
.subscribe(
() -> {
System.out.println("## onComplete()");
},
error -> {
System.out.println("## onError(" + error.getMessage() + ")");
}
);
i hope that helps!
The accepted answer would work, but is hackish. You don't need to throw an error; simply filter the output of processJob which converts the Single to a Maybe, and then use the repeatWhen handler to decide how many times, or with what delay, you may want to resubscribe. See Kotlin code below from a working example, you should be able to easily translate this to Java.
filter { it }
.repeatWhen { handler ->
handler.zipWith(1..3) { _, i -> i }
.flatMap { retryCount -> Flowable.timer(retryDelay.toDouble().pow(retryCount).toLong(), TimeUnit.SECONDS) }
.doOnNext { log.warn("Retrying...") }
}

RxJava2 Single take different route based on the item

I have the following code:
Single<Response<User>> single = service.registerUser();
single
.subscribeOn(Schedulers.io())
.observeOn(Schedulers.computation())
.map(Response::body)
.flatMap(parentsRepsitory::writeUser)
.observeOn(AndroidSchedulers.mainThread())
.flatMap(parentsRepsitory::getUser)
Where the parentsRepository is a repo wraping my realm database. The problems come when the server returns validation errors, however. So somewhere in my stream i want to have the equivalent of
if(response.code() == 201){
// CONTINUE STREAM USING THE LOGIC THAT HANDLES SUCCESS
}elseif(response.code() == 400){
// CONTINUE STREAM USING LOGIC TO HANDLE THE VALIDATION ERRORS
}
A solution I have previously implemented is as follows:
Observable<Response<User>> observable_from_api =
service.attemptLogin(username, password)
.share();
observable_from_api
.filter(response -> response.code() == HttpStatus.HTTP_STATUS_200_OK)
.//handle logic for success
observable_from_api
.filter(response -> response.code() == HttpStatus.HTTP_STATUS_400_BAD_REQUEST)
.//handle logic for validation errors
I don't like this solution for several different reasons. The main one being it just does not seem right. The second one being that the .share() method is only available on an Observable object. Since my network operation emits only one responce I would much rather use Single instead, but the .share() method is not available there.
Excuse me if this is a duplicate question, I have done some digging around and only found the solution I mentioned. I want to either see the optimal solution or be told explicitly that this is in fact the optimal solution.
I think you need to define which kind of data you want your consumer to receive. I assume you want to receive in the consumer a User object.
These are the signatures of the method that you should create:
Single<User> handleSuccess(Response<User> response)
Single<User> handleError(Response<User> response)
And then you create you stream in this way:
service.registerUser()
.flatMap(response -> {
if (response.success) {
return handleSuccess(response);
} else {
return handleError(response);
}
})
.subscribe(user -> logd("user: " + user.name));

Reactive extensions(Rx) Switch() produces new observable which is not subscribed to provided OnCompleted()

I have a problem with my Rx subscription using Switch statement.
_performSearchSubject
.AsObservable()
.Select(_ => PerformQuery())
.Switch()
.ObserveOn(_synchronizationContextService.SynchronizationContext)
.Subscribe(DataArrivedForPositions, PositionQueryError, PositionQueryCompleted)
.DisposeWith(this);
The flow is:
Some properties change and the performSearchSubject.OnNext is called
The PerformPositionQuery() is called, which returns a observer each time it is hit
The service which responds through this observer calls OnNext twice and OnCompleted once when the data receive is done
Method DataArrivedForPositions is called twice as expected
Method PositionQueryCompleted is never called, though observer.OnCompleted() is called inside my data service.
Code for dataService is:
protected override void Request(Request request, IObserver<Response> observer)
{
query.Arrive += p => QueryReceive(request.RequestId, p, observer, query);
query.Error += (type, s, message) => QueryError(observer, message);
query.NoMoreData += id => QueryCompleted(observer);
query.Execute(request);
}
private void QueryError(IObserver<PositionSheetResponse> observer, string message)
{
observer.OnError(new Exception(message));
}
private void QueryCompleted(IObserver<PositionSheetResponse> observer)
{
observer.OnCompleted();
}
private void QueryReceive(Guid requestId, Qry0079Receive receiveData, IObserver<PositionSheetResponse> observer, IQry0079PositionSheet query)
{
observer.OnNext(ConvertToResponse(requestId, receiveData));
}
Switch result will only Complete when your outer observable (_performSearchSubject) completes. I assume in your case this one never does (it's probably bound to a user action performing the search).
What's unclear is when you expect PositionQueryCompleted to be called. If It's after each and every successful query is processed, then your stream needs to be modified, because Switch lost you the information that the query stream completed, but it also lacks information about the UI (wrong scheduler even) to say whether its data was actually processed.
There may be other ways to achieve it, but basically you want your query stream complete to survive through Switch (which currently ignore this event). For instance you can transform your query stream to have n+1 events, with one extra for the complete:
_performSearchSubject
.AsObservable()
.Select(_ =>
PerformQuery()
.Select(Data => new { Data, Complete = false})
.Concat(Observable.Return(new { Data = (string)null, Complete = true })))
You can safely apply .Switch().ObserveOn(_synchronizationContextService.SynchronizationContext) on it, but then you need to modify your subscription:
.Subscribe(data => {
if (data.Complete) DataArrivedForPositions(data.Data);
else PositionQueryCompleted()
}, PositionQueryError)

Rxjava User-Retry observable with .cache operator?

i've an observable that I create with the following code.
Observable.create(new Observable.OnSubscribe<ReturnType>() {
#Override
public void call(Subscriber<? super ReturnType> subscriber) {
try {
if (!subscriber.isUnsubscribed()) {
subscriber.onNext(performRequest());
}
subscriber.onCompleted();
} catch (Exception e) {
subscriber.onError(e);
}
}
});
performRequest() will perform a long running task as you might expect.
Now, since i might be launching the same Observable twice or more in a very short amount of time, I decided to write such transformer:
protected Observable.Transformer<ReturnType, ReturnType> attachToRunningTaskIfAvailable() {
return origObservable -> {
synchronized (mapOfRunningTasks) {
// If not in maps
if ( ! mapOfRunningTasks.containsKey(getCacheKey()) ) {
Timber.d("Cache miss for %s", getCacheKey());
mapOfRunningTasks.put(
getCacheKey(),
origObservable
.doOnTerminate(() -> {
Timber.d("Removed from tasks %s", getCacheKey());
synchronized (mapOfRunningTasks) {
mapOfRunningTasks.remove(getCacheKey());
}
})
.cache()
);
} else {
Timber.d("Cache Hit for %s", getCacheKey());
}
return mapOfRunningTasks.get(getCacheKey());
}
};
}
Which basically puts the original .cache observable in a HashMap<String, Observable>.
This basically disallows multiple requests with the same getCacheKey() (Example login) to call performRequest() in parallel. Instead, if a second login request arrives while another is in progress, the second request observable gets "discarded" and the already-running will be used instead. => All the calls to onNext are going to be cached and sent to both subscribers actually hitting my backend only once.
Now, suppouse this code:
// Observable loginTask
public void doLogin(Observable<UserInfo> loginTask) {
loginTask.subscribe(
(userInfo) -> {},
(throwable) -> {
if (userWantsToRetry()) {
doLogin(loinTask);
}
}
);
}
Where loginTask was composed with the previous transformer. Well, when an error occurs (might be connectivity) and the userWantsToRetry() then i'll basically re-call the method with the same observable. Unfortunately that has been cached and I'll receive the same error without hitting performRequest() again since the sequence gets replayed.
Is there a way I could have both the "same requests grouping" behavior that the transformer provides me AND the retry button?
Your question has a lot going on and it's hard to put it into direct terms. I can make a couple recommendations though. Firstly your Observable.create can be simplified by using an Observable.defer(Func0<Observable<T>>). This will run the func every time a new subscriber is subscribed and catch and channel any exceptions to the subscriber's onError.
Observable.defer(() -> {
return Observable.just(performRequest());
});
Next, you can use observable.repeatWhen(Func1<Observable<Void>, Observable<?>>) to decide when you want to retry. Repeat operators will re-subscribe to the observable after an onComplete event. This particular overload will send an event to a subject when an onComplete event is received. The function you provide will receive this subject. Your function should call something like takeWhile(predicate) and onComplete when you do not want to retry again.
Observable.just(1,2,3).flatMap((Integer num) -> {
final AtomicInteger tryCount = new AtomicInteger(0);
return Observable.just(num)
.repeatWhen((Observable<? extends Void> notifications) ->
notifications.takeWhile((x) -> num == 2 && tryCount.incrementAndGet() != 3));
})
.subscribe(System.out::println);
Output:
1
2
2
2
3
The above example shows that retries are aloud when the event is not 2 and up to a max of 22 retries. If you switch to a repeatWhen then the flatMap would contain your decision as to use a cached observable or the realWork observable. Hope this helps!

RXJS : Idiomatic way to create an observable stream from a paged interface

I have paged interface. Given a starting point a request will produce a list of results and a continuation indicator.
I've created an observable that is built by constructing and flat mapping an observable that reads the page. The result of this observable contains both the data for the page and a value to continue with. I pluck the data and flat map it to the subscriber. Producing a stream of values.
To handle the paging I've created a subject for the next page values. It's seeded with an initial value then each time I receive a response with a valid next page I push to the pages subject and trigger another read until such time as there is no more to read.
Is there a more idiomatic way of doing this?
function records(start = 'LATEST', limit = 1000) {
let pages = new rx.Subject();
this.connect(start)
.subscribe(page => pages.onNext(page));
let records = pages
.flatMap(page => {
return this.read(page, limit)
.doOnNext(result => {
let next = result.next;
if (next === undefined) {
pages.onCompleted();
} else {
pages.onNext(next);
}
});
})
.pluck('data')
.flatMap(data => data);
return records;
}
That's a reasonable way to do it. It has a couple of potential flaws in it (that may or may not impact you depending upon your use case):
You provide no way to observe any errors that occur in this.connect(start)
Your observable is effectively hot. If the caller does not immediately subscribe to the observable (perhaps they store it and subscribe later), then they'll miss the completion of this.connect(start) and the observable will appear to never produce anything.
You provide no way to unsubscribe from the initial connect call if the caller changes its mind and unsubscribes early. Not a real big deal, but usually when one constructs an observable, one should try to chain the disposables together so it call cleans up properly if the caller unsubscribes.
Here's a modified version:
It passes errors from this.connect to the observer.
It uses Observable.create to create a cold observable that only starts is business when the caller actually subscribes so there is no chance of missing the initial page value and stalling the stream.
It combines the this.connect subscription disposable with the overall subscription disposable
Code:
function records(start = 'LATEST', limit = 1000) {
return Rx.Observable.create(observer => {
let pages = new Rx.Subject();
let connectSub = new Rx.SingleAssignmentDisposable();
let resultsSub = new Rx.SingleAssignmentDisposable();
let sub = new Rx.CompositeDisposable(connectSub, resultsSub);
// Make sure we subscribe to pages before we issue this.connect()
// just in case this.connect() finishes synchronously (possible if it caches values or something?)
let results = pages
.flatMap(page => this.read(page, limit))
.doOnNext(r => this.next !== undefined ? pages.onNext(this.next) : pages.onCompleted())
.flatMap(r => r.data);
resultsSub.setDisposable(results.subscribe(observer));
// now query the first page
connectSub.setDisposable(this.connect(start)
.subscribe(p => pages.onNext(p), e => observer.onError(e)));
return sub;
});
}
Note: I've not used the ES6 syntax before, so hopefully I didn't mess anything up here.