Let's suppose I have a vector x and 2 constants initialized as follows:
x = [ones(1,21) zeros(1,79)]; %step of 100 components
p = 2; q = 0;
Now, I want to build this matrix:
But in this case for example x(q-1) = x(-1) doesn't exist, so I want it to be 0, and I was wondering if there is a way to do it with the minimum lines of code. Note that the matrix can be written with the function toeplitz(), but I don't know how to replace nonexistent position of my vector x with zeros.
I hope someone can help me. Thank you for your answers.
You need to be careful about zero-based or one-based indexing.
In your question, you state that negative indices are invalid - in MATLAB the index 0 is also invalid. The below code assumes your x(q) is zero-based as described, but I do a +1 conversion. Be aware of this if q+p-1 is near numel(x).
x = [ones(1,21) zeros(1,79)]; %step of 100 components
p = 2; q = 0;
% Set up indexing matrix using implicit expansion (R2016b or newer)
m = ( q:-1:q-p+1 ) + ( 0:1:q+p-1 ).';
% Convert from 0-based to 1-based for MATLAB
m = m + 1;
% Set up output matrix, defaulting to zero
M = zeros( size( m ) );
% Put elements where 'm' is valid from 'x' into output 'M'
M( m > 0 ) = x( m( m > 0 ) );
The output is a (q+p) * p matrix.
Related
Is there a function in MATLAB that generates the following matrix for a given scalar r:
1 r r^2 r^3 ... r^n
0 1 r r^2 ... r^(n-1)
0 0 1 r ... r^(n-2)
...
0 0 0 0 ... 1
where each row behaves somewhat like a power analog of the CUMSUM function?
You can compute each term directly using implicit expansion and element-wise power, and then apply triu:
n = 5; % size
r = 2; % base
result = triu(r.^max((1:n)-(1:n).',0));
Or, maybe a little faster because it doesn't compute unwanted powers:
n = 5; % size
r = 2; % base
t = (1:n)-(1:n).';
u = find(t>=0);
t = t(u);
result = zeros(n);
result(u) = r.^t;
Using cumprod and triu:
% parameters
n = 5;
r = 2;
% Create a square matrix filled with 1:
A = ones(n);
% Assign the upper triangular part shifted by one with r
A(triu(A,1)==1)=r;
% cumprod along the second dimension and get only the upper triangular part
A = triu(cumprod(A,2))
Well, cumsum accumulates the sum of a vector but you are asking for a specially design matrix, so the comparison is a bit problematic....
Anyway, it might be that there is a function for this if this is a common special case triangular matrix (my mathematical knowledge is limited here, sorry), but we can also build it quite easily (and efficiently=) ):
N = 10;
r = 2;
% allocate arry
ary = ones(1,N);
% initialize array
ary(2) = r;
for i = 3:N
ary(i) = ary(i-1)*r;
end
% build matrix i.e. copy the array
M = eye(N);
for i = 1:N
M(i,i:end) = ary(1:end-i+1);
end
This assumes that you want to have a matrix of size NxN and r is the value that you want calculate the power of.
FIX: a previous version stated in line 13 M(i,i:end) = ary(i:end);, but the assignment needs to start always at the first position of the ary
Here is a question about whether we can use vectorization type of operation in matlab to avoid writing for loop.
I have a vector
Q = [0.1,0.3,0.6,1.0]
I generate a uniformly distributed random vector over [0,1)
X = [0.11,0.72,0.32,0.94]
I want to know whether each entry of X is between [0,0.1) or [0.1,0.3) or [0.3,0.6), or [0.6,1.0) and I want to return a vector which contains the index of the maximum element in Q that each entry of X is less than.
I could write a for loop
Y = zeros(length(X),1)
for i = 1:1:length(X)
Y(i) = find(X(i)<Q, 1);
end
Expected result for this example:
Y = [2,4,3,4]
But I wonder if there is a way to avoid writing for loop? (I see many very good answers to my question. Thank you so much! Now if we go one step further, what if my Q is a matrix, such that I want check whether )
Y = zeros(length(X),1)
for i = 1:1:length(X)
Y(i) = find(X(i)<Q(i), 1);
end
Use the second output of max, which acts as a sort of "vectorized find":
[~, Y] = max(bsxfun(#lt, X(:).', Q(:)), [], 1);
How this works:
For each element of X, test if it is less than each element of Q. This is done with bsxfun(#lt, X(:).', Q(:)). Note each column in the result corresponds to an element of X, and each row to an element of Q.
Then, for each element of X, get the index of the first element of Q for which that comparison is true. This is done with [~, Y] = max(..., [], 1). Note that the second output of max returns the index of the first maximizer (along the specified dimension), so in this case it gives the index of the first true in each column.
For your example values,
Q = [0.1, 0.3, 0.6, 1.0];
X = [0.11, 0.72, 0.32, 0.94];
[~, Y] = max(bsxfun(#lt, X(:).', Q(:)), [], 1);
gives
Y =
2 4 3 4
Using bsxfun will help accomplish this. You'll need to read about it. I also added a Q = 0 at the beginning to handle the small X case
X = [0.11,0.72,0.32,0.94 0.01];
Q = [0.1,0.3,0.6,1.0];
Q_extra = [0 Q];
Diff = bsxfun(#minus,X(:)',Q_extra (:)); %vectorized subtraction
logical_matrix = diff(Diff < 0); %find the transition from neg to positive
[X_categories,~] = find(logical_matrix == true); % get indices
% output is 2 4 3 4 1
EDIT: How long does each method take?
I got curious about the difference between each solution:
Test Code Below:
Q = [0,0.1,0.3,0.6,1.0];
X = rand(1,1e3);
tic
Y = zeros(length(X),1);
for i = 1:1:length(X)
Y(i) = find(X(i)<Q, 1);
end
toc
tic
result = arrayfun(#(x)find(x < Q, 1), X);
toc
tic
Q = [0 Q];
Diff = bsxfun(#minus,X(:)',Q(:)); %vectorized subtraction
logical_matrix = diff(Diff < 0); %find the transition from neg to positive
[X_categories,~] = find(logical_matrix == true); % get indices
toc
Run it for yourself, I found that when the size of X was 1e6, bsxfun was much faster, while for smaller arrays the differences were varying and negligible.
SAMPLE: when size X was 1e3
Elapsed time is 0.001582 seconds. % for loop
Elapsed time is 0.007324 seconds. % anonymous function
Elapsed time is 0.000785 seconds. % bsxfun
Octave has a function lookup to do exactly that. It takes a lookup table of sorted values and an array, and returns an array with indices for values in the lookup table.
octave> Q = [0.1 0.3 0.6 1.0];
octave> x = [0.11 0.72 0.32 0.94];
octave> lookup (Q, X)
ans =
1 3 2 3
The only issue is that your lookup table has an implicit zero which be fixed easily with:
octave> lookup ([0 Q], X) # alternatively, just add 1 at the results
ans =
2 4 3 4
You can create an anonymous function to perform the comparison, then apply it to each member of X using arrayfun:
compareFunc = #(x)find(x < Q, 1);
result = arrayfun(compareFunc, X, 'UniformOutput', 1);
The Q array will be stored in the anonymous function ( compareFunc ) when the anonymous function is created.
Or, as one line (Uniform Output is the default behavior of arrayfun):
result = arrayfun(#(x)find(x < Q, 1), X);
Octave does a neat auto-vectorization trick for you if the vectors you have are along different dimensions. If you make Q a column vector, you can do this:
X = [0.11, 0.72, 0.32, 0.94];
Q = [0.1; 0.3; 0.6; 1.0; 2.0; 3.0];
X <= Q
The result is a 6x4 matrix indicating which elements of Q each element of X is less than. I made Q a different length than X just to illustrate this:
0 0 0 0
1 0 0 0
1 0 1 0
1 1 1 1
1 1 1 1
1 1 1 1
Going back to the original example you have, you can do
length(Q) - sum(X <= Q) + 1
to get
2 4 3 4
Notice that I have semicolons instead of commas in the definition of Q. If you want to make it a column vector after defining it, do something like this instead:
length(Q) - sum(X <= Q') + 1
The reason that this works is that Octave implicitly applies bsxfun to an operation on a row and column vector. MATLAB will not do this until R2016b according to #excaza's comment, so in MATLAB you can do this:
length(Q) - sum(bsxfun(#le, X, Q)) + 1
You can play around with this example in IDEOne here.
Inspired by the solution posted by #Mad Physicist, here is my solution.
Q = [0.1,0.3,0.6,1.0]
X = [0.11,0.72,0.32,0.94]
Temp = repmat(X',1,4)<repmat(Q,4,1)
[~, ind]= max( Temp~=0, [], 2 );
The idea is that make the X and Q into the "same shape", then use element wise comparison, then we obtain a logical matrix whose row tells whether a given element in X is less than each of the element in Q, then return the first non-zero index of each row of this logical matrix. I haven't tested how fast this method is comparing to other methods
I have an array A (I have written so as to make it similar to the matrix that I am using) :
%%%%%%%%%%%%% This is Matrix %%%%%%%%%%%%%%%%%%%%
a = 3; b = 240; c = 10; d = 30; e = 1;
mtx1 = a.*rand(30,1) + a;
mtx2 = round((b-c).*rand(30,1));
mtx3 = round((d-e).*rand(30,1));
mtx4 = -9999.*ones(30,1);
A = [mtx1 mtx2 mtx3 mtx4];
for i = 10:12
for ii = 17 :19
A(i,:)= -9999;
A(ii,:)= 999;
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
I would calculate some statistical values, excluding from the calculation the values **-9999 and 999.
the statistical values must be calculated with respect to each column.
the columns represent respectively: the wind speed, direction, and
other parameters
I wrote a code but it is not correct
[nr,ncc]=size(A);
for i=1:ncc
B = A(:,i); %// Temp Vector
Oup=1; Odw=1; %// for Vector Control
while Oup>0 %// || Odw>0 % Oup>0 OR Odw>0 , Oup>0 && (AND) Odw>0
B=sort(B,'descend');
U = find(B<999 & B>-9999); % find for each column of the temp
%vector
Oup = length(U); % Calculates the length
B(U)=[]; % Delete values -9999 and 9999
end
% calculates parameters with the vector temp
count(i)=length(B);
med(i)=mean(B);
devst(i)=std(B);
mediana(i)=median(B);
vari(i)=var(B);
kurt(i)=kurtosis(B);
Asimm(i)=skewness(B);
Interv(i)=range(B);
Mass(i)=max(B);
Mini(i)=min(B);
if length(B)<nr
B(length(B)+1:nr)=nan;
end
C(:,i)=B(:); %//reconstruction of the original matrix
end
would you have any suggestions?
If your data set is in A, and you want to operate on it with a function f, just use logical indexing, i.e.:
f(A( ~(A==999 & A==-9999) )) =...
Alternatively, use find and linear indexing:
ind = find( ~(A==999 & A==-9999) );
f(A(ind)) = ....
I am trying to create a matrix (32 x 32) with -1 on its main diagonal and 1 in its first and second superdiagonals. 0 everywhere else.
A = eye(32)* -1;
That gives me a matrix with -1 on its main diagonal, how do I proceed?
n=32;
toeplitz([-1; zeros(n-1,1)],[-1 1 1 zeros(1,n-3)])
is what you need. This will create a non-symmetric Toeplitz matrix (a band matrix), the first column of which is given by [-1; zeros(32-1,1)], the first row by [-1 1 1 zeros(1,32-3)]. You could also define a function with size n as input parameter, if necessary.
You can use spdiags to set the diagonals directly into a sparse matrix and full-it if desired.
n = 32;
Asparse = spdiags(ones(n,1)*[-1,1,1],[0,1,2],n,n);
Afull = full(Asparse);
n = 32
A = -1*eye(n); %Create 32x32 Identity
A(n+1:n+1:n^2) = 1; %Set 1st Superdiagonal to 1
A(2*n+1:n+1:n^2) = 1; %Set 2nd Superdiagonal to 1
Note that MATLAB uses column-major order for matrices. For the 1st superdiagonal, we start with the (n+1)th element and choose every (n+1)th element thereon. We do a similar operation for 2nd superdiagonal except we start from (2*n+1)th element.
Just using diag and eye:
n = 32;
z = ones(n-1,1);
A = diag(z,1)+diag(z(1:n-2),2)-eye(n);
There's also:
n = 32;
A = gallery('triw',n,1,2)-2*eye(n)
using the gallery function with the 'triw' option.
diag allows you to create a matrix passing a diagonal:
-diag(ones(n,1),0)+diag(ones(n-1,1),1)+diag(ones(n-2,1),2)
Last parameter 0 for the main diagonal, 1 and 2 for the super diagonals.
If I can suggest more esoteric code, first create a vector full of 1s, then create the identity matrix, then shift create a diagonal matrix with these 1s with the vector and shift it to the right by 1, decreasing the amount of elements in the vector, then do it again for the last superdiagonal.
n = 32;
vec = ones(n,1);
out = -eye(n) + diag(vec(1:end-1),1) + diag(vec(1:end-2),2);
N = 32;
A = -diag(ones(N,1)); % diagonal
tmp1=diag(ones(N-1,1),1); %1st supra
tmp1=diag(ones(N-2,1),2); #2nd supra
A = A+tmp1+tmp2;
using diag
Yet another approach: this uses convmtx from the Signal Processing Toolbox:
n = 32; %// matrix size
v = [-1 1 1]; %// vector with values
M = convmtx(v, n);
M = M(:,1:end-numel(v)+1);
I have a 30-vector, x where each element of x follows a standardised normal distribution.
So in Matlab,
I have:
for i=1:30;
x(i)=randn;
end;
Now I want to create 30*30=900 elements from vector, x to make a 900-vector, C defined as follows:
I am unable to do the loop for two variables (k and l) properly. I have:
for k=1:30,l=1:30;
C(k,l)=(1/30)*symsum((x(i))*(x(i-abs(k-l))),1,30+abs(k-l));
end
It says '??? Undefined function or method 'symsum' for input arguments of type
'double'.'
I hope to gain from this a 900-vector, C which I will then rewrite as a matrix. The reason I have using two indices k and l instead of one is because I eventually want these indices to denote the (k,l)-entry of such a matrix so it is important that that my 900-vector will be in the form of C = [ row 1 row 2 row 3 ... row 30 ] so I can use the reshape tool i.e.
C'=reshape(C,30,30)
Could anyone help me with the code for the summation and getting such a 900 vector.
Let's try to make this a bit efficient.
n = 30;
x = randn(n,1);
%# preassign C for speed
C = zeros(n);
%# fill only one half of C, since it's symmetric
for k = 2:n
for l = 1:k-1
%# shift the x-vector by |k-l| and sum it up
delta = k-l; %# k is always larger than l
C(k,l) = sum( x(1:end-delta).*x(1+delta:end) );
end
end
%# fill in the other half of C
C = C + C';
%# add the diagonal (where delta is 0, and thus each
%# element of x is multiplied with itself
C(1:n+1:end) = sum(x.^2);
It seems to me that you want a matrix C of 30x30 elements.
Given the formula that you provided I would do
x = randn(1,30)
C = zeros(30,30)
for k=1:30
for l=1:30
v = abs(k-l);
for i =1:30-v
C(k,l) = C(k,l) + x(i)*x(i+v);
end
end
end
if you actually need the vector you can obtain it from the matrix.