Can Swift structs self-delete? - swift

Consider the following:
struct MiniString {
private(set) var value: String
init(_ value: String) {
if value.count < 17 {
self.value = value
} else {
selfDeleteSomehow()
}
}
}
Elsewhere this could be instantiated thus:
var ms: MiniString? = MiniString("This string is too long to be accepted")
print(ms) // prints 'nil'
Context: my specific use-case is for a func declaration in a protocol that would return a Double between 0.0 and 1.0, but no higher or lower, something like:
protocol DoubleBetweenZeroAndOneProtocol {
func getResult() -> DoubleBetweenZeroAndOne
}

You could use a failable initializer:
struct MiniString {
var value: String { return value_ }
private let value_: String
init?(_ seedValue: String) {
if seedValue.count < 17 {
value_ = seedValue
} else {
return nil
}
}
}

Related

Observe generic values with Combine

Take this case of a type constrained class Parameter, wrapping a value of given type.
Parameter conforms to the AnyParameter so it can be passed anywhere in the app without knowing the type. Parameters can be displayed in value cells AnyValueCell
How would you do to observe the change without having to know the underlying value type? It would be nice to avoid the code repetition in the value cell updateObserver function
Could AnyPublisher can be used here and how?
import UIKit
import Combine
print("Hello Playground")
protocol AnyParameter {
var anyValue: Any { get }
func set(value: Any)
}
protocol ParameterProtocol: AnyParameter {
associatedtype ValueType
var value: ValueType { get }
func set(value: ValueType)
}
public class Parameter<T>: ParameterProtocol {
typealias ValueType = T
#Published var value: T
var anyValue: Any { value }
init(value: T) {
self.value = value
}
func set(value: Any) {
guard let value = value as? T else { return }
set(value: value)
}
func set(value: T) {
self.value = value
}
}
public class AnyValueCell {
var parameter: AnyParameter {
didSet {
updateObserver()
}
}
var observer: AnyCancellable?
init(parameter: AnyParameter) {
self.parameter = parameter
updateObserver()
}
func updateObserver() {
observer?.cancel()
// This is the point of the question - How to make this generic?
// ---->
if let p = parameter as? Parameter<Int> {
observer = p.$value.sink() { value in
print("Update Cell -> \(value)")
}
return
}
if let p = parameter as? Parameter<Double> {
observer = p.$value.sink() { value in
print("Update Cell -> \(value)")
}
return
}
if let p = parameter as? Parameter<Bool> {
observer = p.$value.sink() { value in
print("Update Cell -> \(value)")
}
return
}
// <----
print("Wrong param type")
}
}
let intParam = Parameter<Int>(value: 42)
let doubleParam = Parameter<Double>(value: 3.14)
let boolParam = Parameter<Bool>(value: false)
var params: [AnyParameter] = [intParam, doubleParam, boolParam]
print ("--> Init Cells")
let cells: [AnyValueCell] = params.map { AnyValueCell(parameter: $0) }
print ("--> Change values")
intParam.set(value: 21)
doubleParam.set(value: 1.618)
boolParam.set(value: true)
Result, as expected:
Hello Playground
--> Init Cells
Update Cell -> 42
Update Cell -> 3.14
Update Cell -> false
--> Change values
Update Cell -> 21
Update Cell -> 1.618
Update Cell -> true
Add an anyValuePublisher property. You can (and maybe should) add it to AnyParameter, or you can define it in a separate protocol like this:
protocol AnyParameterPublishing: AnyParameter {
var anyValuePublisher: AnyPublisher<Any, Never> { get }
}
extension Parameter: AnyParameterPublishing {
var anyValuePublisher: AnyPublisher<Any, Never> {
return $value.map { $0 as Any }.eraseToAnyPublisher()
}
}
Then you can use it like this:
class AnyValueCell {
// ...
func updateObserver() {
guard let publishing = (parameter as? AnyParameterPublishing) else {
print("Wrong param type")
return
}
observer = publishing.anyValuePublisher
.sink { print("Update Cell -> \($0)") }
}
}

Strange behavior of UnsafeMutablePointer

I've built a little structure which holds a pseudo-C-String UnsafeMutablePointer. Now I wanted to add a way to get the length of the String, but something behaved very strange:
struct Char {
let value: CChar
init(_ char: CChar) {
self.value = char
}
}
extension Char: CustomStringConvertible {
var description: String {
return String(UnicodeScalar(UInt8(bitPattern: self.value)))
}
}
extension Char: Equatable {
public static func ==(lhs: Char, rhs: Char) -> Bool {
return lhs.value == rhs.value
}
}
struct CharPointer {
let pointer: UnsafeMutablePointer<Char>
init(_ string: String) {
let chars = string.cString(using: .utf8)!.map { Char($0) }
self.pointer = UnsafeMutablePointer(mutating: chars)
}
subscript(_ offset: Int) -> Char {
get { return self.pointer[offset] }
set { self.pointer[offset] = newValue }
}
var length: Int {
var ptr = self.pointer
while ptr.pointee != Char(0) {
ptr += 1
}
return ptr - self.pointer
}
}
let pointer = CharPointer("Hello World!")
print(pointer[0])
// print(pointer.length)
If I don't use the length property, everything works just fine and the print statement prints an "H". But if I try to access pointer.length, it prints a newline, although I use the property after the print statement, and the length is 0. Is this a bug or have I made a mistake?
Thanks to #Hamish I found a solution, I just initialize a second pointer with the pointer from the array:
init(_ string: String) {
let chars = string.cString(using: .utf8)!.map { Char($0) }
let pointer = UnsafeMutablePointer(mutating: chars)
let pointer2 = UnsafeMutablePointer<Char>.allocate(capacity: chars.count)
pointer2.initialize(from: pointer, count: chars.count)
self.pointer = pointer2
}

How would one implement a bidirectional map in Swift?

I am currently in need of a performant bidirectional map. In Swift, a dictionary can be reversed, however, that will return a tuple of the types it is made of, not a counterpart dictionary.
Is there a library for that or does someone have ideas on how to address this issue?
Thanks
With Swift 4 you could easily make your own using a generic struct:
struct BidiMap<F:Hashable,T:Hashable>
{
private var _forward : [F:T]? = nil
private var _backward : [T:F]? = nil
var forward:[F:T]
{
mutating get
{
_forward = _forward ?? [F:T](uniqueKeysWithValues:_backward?.map{($1,$0)} ?? [] )
return _forward!
}
set { _forward = newValue; _backward = nil }
}
var backward:[T:F]
{
mutating get
{
_backward = _backward ?? [T:F](uniqueKeysWithValues:_forward?.map{($1,$0)} ?? [] )
return _backward!
}
set { _backward = newValue; _forward = nil }
}
init(_ dict:[F:T] = [:])
{ forward = dict }
init(_ values:[(F,T)])
{ forward = [F:T](uniqueKeysWithValues:values) }
subscript(_ key:T) -> F?
{ mutating get { return backward[key] } set{ backward[key] = newValue } }
subscript(_ key:F) -> T?
{ mutating get { return forward[key] } set{ forward[key] = newValue } }
subscript(to key:T) -> F?
{ mutating get { return backward[key] } set{ backward[key] = newValue } }
subscript(from key:F) -> T?
{ mutating get { return forward[key] } set{ forward[key] = newValue } }
var count:Int { return _forward?.count ?? _backward?.count ?? 0 }
}
var bd = BidiMap( [1:"A", 2:"B", 3:"C"] )
bd[1] // "A"
bd["B"] // 2
bd[4] = "D"
bd[to:"D"] // 4
bd[from:4] // "D"
var int2int = BidiMap( [1:2, 5:3] )
int2int[from:1] // 2
int2int[to:3] // 5
[EDIT] improved performance a bit by delaying rebuilding of mirror dictionary until it is actually referenced.

Extending swift optional for default values

I'm trying to extend Swift's Optional type with default values. Providing empty values in API requests should raise an exception. I've done this for the String type, but I can't achieve the same result with the Integer type:
extension Optional where Wrapped == String {
var unwrappedValue: String {
get {
switch self {
case .some(let value):
return value
case .none:
return ""
}
}
}
}
The Integer version is throwing the following Error:
Protocol 'Integer' can only be used as a generic constraint because it
has Self or associated type requirements
extension Optional where Wrapped == Integer {
var unwrappedValue: Integer {
get {
switch self {
case .some(let value):
return value
case .none:
return 0
}
}
}
}
If you use this for a lot of Types you might want to consider the following addition to the answer of Leo Dabus:
protocol Defaultable {
static var defaultValue: Self { get }
}
extension Optional where Wrapped: Defaultable {
var unwrappedValue: Wrapped { return self ?? Wrapped.defaultValue }
}
This way you can extend your types very easily:
extension Int: Defaultable {
static var defaultValue: Int { return 0 }
}
extension String: Defaultable {
static var defaultValue: String { return "" }
}
extension Array: Defaultable {
static var defaultValue: Array<Element> { return [] }
}
And usage goes like this:
let optionalInt: Int? = 10 // Optional(10)
let unwrappedInt = optionalInt.unwrappedValue // 10
let optionalString: String? = "Hello" // Optional("Hello")
let unwrappedString = optionalString.unwrappedValue // "Hello"
let optionalArray: [Int]? = nil // nil
let unwrappedArray = optionalArray.unwrappedValue // []
You just need to return Wrapped instead of Integer
extension Optional where Wrapped: Integer {
var unwrappedValue: Wrapped {
switch self {
case .some(let value):
return value
case .none:
return 0
}
}
}
or simply
extension Optional where Wrapped: Integer {
var safelyUnwrapped: Wrapped { return self ?? 0 }
}
let optionalInt = Int("10")
let unwrappedValue = optionalInt.safelyUnwrapped // 10
You can also achieve using below code:
extension Optional {
func defaultValue(_ val: Wrapped) -> Wrapped { return self ?? val }
}
var str: String?
str.defaultValue("User")
var a: Int?
a.defaultValue(2)
This will work for both data types.

Insertion-Order Dictionary (like Java's LinkedHashMap) in Swift?

Is there a standard swift class that is a Dictionary, but keeps keys in insertion-order like Java's LinkedHashMap? If not, how would one be implemented?
Didn't know of one and it was an interesting problem to solve (already put it in my standard library of stuff) Mostly it's just a matter of maintaining a dictionary and an array of the keys side-by-side. But standard operations like for (key, value) in od and for key in od.keys will iterate in insertion order rather than a semi random fashion.
// OrderedDictionary behaves like a Dictionary except that it maintains
// the insertion order of the keys, so iteration order matches insertion
// order.
struct OrderedDictionary<KeyType:Hashable, ValueType> {
private var _dictionary:Dictionary<KeyType, ValueType>
private var _keys:Array<KeyType>
init() {
_dictionary = [:]
_keys = []
}
init(minimumCapacity:Int) {
_dictionary = Dictionary<KeyType, ValueType>(minimumCapacity:minimumCapacity)
_keys = Array<KeyType>()
}
init(_ dictionary:Dictionary<KeyType, ValueType>) {
_dictionary = dictionary
_keys = map(dictionary.keys) { $0 }
}
subscript(key:KeyType) -> ValueType? {
get {
return _dictionary[key]
}
set {
if newValue == nil {
self.removeValueForKey(key)
}
else {
self.updateValue(newValue!, forKey: key)
}
}
}
mutating func updateValue(value:ValueType, forKey key:KeyType) -> ValueType? {
let oldValue = _dictionary.updateValue(value, forKey: key)
if oldValue == nil {
_keys.append(key)
}
return oldValue
}
mutating func removeValueForKey(key:KeyType) {
_keys = _keys.filter { $0 != key }
_dictionary.removeValueForKey(key)
}
mutating func removeAll(keepCapacity:Int) {
_keys = []
_dictionary = Dictionary<KeyType,ValueType>(minimumCapacity: keepCapacity)
}
var count: Int { get { return _dictionary.count } }
// keys isn't lazy evaluated because it's just an array anyway
var keys:[KeyType] { get { return _keys } }
// values is lazy evaluated because of the dictionary lookup and creating a new array
var values:GeneratorOf<ValueType> {
get {
var index = 0
return GeneratorOf<ValueType> {
if index >= self._keys.count {
return nil
}
else {
let key = self._keys[index]
index++
return self._dictionary[key]
}
}
}
}
}
extension OrderedDictionary : SequenceType {
func generate() -> GeneratorOf<(KeyType, ValueType)> {
var index = 0
return GeneratorOf<(KeyType, ValueType)> {
if index >= self._keys.count {
return nil
}
else {
let key = self._keys[index]
index++
return (key, self._dictionary[key]!)
}
}
}
}
func ==<Key: Equatable, Value: Equatable>(lhs: OrderedDictionary<Key, Value>, rhs: OrderedDictionary<Key, Value>) -> Bool {
return lhs._keys == rhs._keys && lhs._dictionary == rhs._dictionary
}
func !=<Key: Equatable, Value: Equatable>(lhs: OrderedDictionary<Key, Value>, rhs: OrderedDictionary<Key, Value>) -> Bool {
return lhs._keys != rhs._keys || lhs._dictionary != rhs._dictionary
}
Swift 5 version:
// OrderedDictionary behaves like a Dictionary except that it maintains
// the insertion order of the keys, so iteration order matches insertion
// order.
struct OrderedDictionary<KeyType: Hashable, ValueType> {
private var _dictionary: Dictionary<KeyType, ValueType>
private var _keys: Array<KeyType>
init() {
_dictionary = [:]
_keys = []
}
init(minimumCapacity: Int) {
_dictionary = Dictionary<KeyType, ValueType>(minimumCapacity: minimumCapacity)
_keys = Array<KeyType>()
}
init(_ dictionary: Dictionary<KeyType, ValueType>) {
_dictionary = dictionary
_keys = dictionary.keys.map { $0 }
}
subscript(key: KeyType) -> ValueType? {
get {
_dictionary[key]
}
set {
if newValue == nil {
self.removeValueForKey(key: key)
} else {
_ = self.updateValue(value: newValue!, forKey: key)
}
}
}
mutating func updateValue(value: ValueType, forKey key: KeyType) -> ValueType? {
let oldValue = _dictionary.updateValue(value, forKey: key)
if oldValue == nil {
_keys.append(key)
}
return oldValue
}
mutating func removeValueForKey(key: KeyType) {
_keys = _keys.filter {
$0 != key
}
_dictionary.removeValue(forKey: key)
}
mutating func removeAll(keepCapacity: Int) {
_keys = []
_dictionary = Dictionary<KeyType, ValueType>(minimumCapacity: keepCapacity)
}
var count: Int {
get {
_dictionary.count
}
}
// keys isn't lazy evaluated because it's just an array anyway
var keys: [KeyType] {
get {
_keys
}
}
var values: Array<ValueType> {
get {
_keys.map { _dictionary[$0]! }
}
}
static func ==<Key: Equatable, Value: Equatable>(lhs: OrderedDictionary<Key, Value>, rhs: OrderedDictionary<Key, Value>) -> Bool {
lhs._keys == rhs._keys && lhs._dictionary == rhs._dictionary
}
static func !=<Key: Equatable, Value: Equatable>(lhs: OrderedDictionary<Key, Value>, rhs: OrderedDictionary<Key, Value>) -> Bool {
lhs._keys != rhs._keys || lhs._dictionary != rhs._dictionary
}
}
extension OrderedDictionary: Sequence {
public func makeIterator() -> OrderedDictionaryIterator<KeyType, ValueType> {
OrderedDictionaryIterator<KeyType, ValueType>(sequence: _dictionary, keys: _keys, current: 0)
}
}
struct OrderedDictionaryIterator<KeyType: Hashable, ValueType>: IteratorProtocol {
let sequence: Dictionary<KeyType, ValueType>
let keys: Array<KeyType>
var current = 0
mutating func next() -> (KeyType, ValueType)? {
defer { current += 1 }
guard sequence.count > current else {
return nil
}
let key = keys[current]
guard let value = sequence[key] else {
return nil
}
return (key, value)
}
}
I didn't found way to make values 'lazy'.. need more research