Where to Store all my scene name in one place - unity3d

I am making a probject in Unity, and would like to have one play to access all my SceneNaming;
Right now in the UI, I have to set the scene name manually.
I would like to store all my scene name in an object, so that I can just use a drag drop to choose all my scenes names.
I tried to put a static class and have then like this
public static string SCENE_MENU = "Menu";
public static string SCENE_WORLD = "Demo";
or inside an enum
public enum SCENE_NAME{
Menu, Demo
}
and then use GetName on the enum to get the value
What is the best approach? 1: /storage/temp/135402-screenshot-1.png

With a customer editor script you could use a SceneAsset to store a Scene's path instead.
I will use a CustomEditor here since for starters it's easier to understand what happens there. Later you might want to switch it to a CustomPropertyDrawer wot a proper class or maybe even as Attribute.
Place this in anywhere in the Assets
public class SceneLoader : MonoBehaviour
{
public string ScenePath;
public void Load()
{
//e.g.
SceneManager.LoadSceneAsync(ScenePath);
}
}
Place this inside of a folder Editor (so it will not be included in a build where the UnityEditor namespace does not exist)
[CustomEditor(typeof(SceneLoader), true)]
public class ScenePickerEditor : Editor
{
private SerializedProperty _scenePath;
private void OnEnable()
{
_scenePath = serializezObject.FindProperty("ScenePath");
}
public override void OnInspectorGUI()
{
// Draw the usual script field
EditorGUI.BeginDisabledGroup(true);
EditorGUILayout.ObjectField(.FromMonoBehaviour((SceneLoader)target), typeof(SceneLoader), false);
EditorGUI.EndDisabledGroup();
// Loads current Values into the serialized "copy"
serializedObject.Update();
// Get the current scene asset for the current path
var currentScene = !string.IsNullOrWhiteSpace(_scenePath.stringValue) ? AssetDatabase.LoadAssetAtPath<SceneAsset>(_scenePath.stringValue) : null;
EditorGUI.BeginChangeCheck();
var newScene = (SceneAsset)EditorGUILayout.ObjectField("Scene", currentScene, typeof(SceneAsset), false);
if (EditorGUI.EndChangeCheck())
{
_scenePath.stringValue = newScene != Null ? AssetDatabase.GetAssetPath(newScene) : "";
}
// Write back changes to the actual component
serializedObject.ApplyModifiedProperties();
}
}
And e.g. to your button attach that SceneLoader component.
Than you can simply reference the target scene in the Inspector via drag and drop. Internally it instead stores the according ScenePath.
Now in onClick instead use that SceneLoader.Load.
Note:
As mentioned here only storing the scene path might not be "save" and breaks if you later move the according scene or rename it. So maybe it would be a good extension to also store according object reference as a kind of fallback.
You could than also use this approach and extend it to be a central manager instead like
// It could as well be a ScriptableObject object
// this makes e.g. Awake run already in edit mode
[ExecuteInEditMode]
public class ScenePathManager : MonoBehaviour
{
// I would prefere references but for ease of this post
// use a Singleton for access
public static ScenePathManager Instance;
public List<string> AvailableScenePaths = new List<string>();
private void Awake ()
{
Instance = this;
}
}
and in the editor script use a list (again there are more beautiful ways like ReorderableList bit this would get to complex here
[CustomEditor(typeof(ScenePathManager))]
public class ScenePathManagerEditor : Editor
{
private SerializedProperty _availablePaths;
private void OnEnable ()
{
_availablePaths = serializedObject.FindProperty("AvailablScenePaths");
}
public override OnInpectorGUI ()
{
// Draw the usual script field
EditorGUI.BeginDisabledGroup(true);
EditorGUILayout.ObjectField(.FromMonoBehaviour((SceneLoader)target), typeof(SceneLoader), false);
EditorGUI.EndDisabledGroup();
serializedObject.Update();
//Do the same thing as before but this time in a loop
for(var i=0; i<_availablePaths.arraySize; i++)
{
var _scenePath = _availablePaths.GetArrayElementAtIndex(i);
// Loads current Values into the serialized "copy"
serializedObject.Update();
// Get the current scene asset for the current path
var currentScene = !string.IsNullOrWhiteSpace(_scenePath.stringValue) ? AssetDatabase.LoadAssetAtPath<SceneAsset>(_scenePath.stringValue) : null;
EditorGUI.BeginChangeCheck();
var newScene = (SceneAsset)EditorGUILayout.ObjectField("Scene", currentScene, typeof(SceneAsset), false);
if (EditorGUI.EndChangeCheck())
{
_scenePath.stringValue = newScene != Null ? AssetDatabase.GetAssetPath(newScene) : "";
}
}
serializedObject.ApplyModifiedProperties();
}
}
Than you could reference all needed scenes in that manager and than on your SceneLoader instead have a Popup field (like for enums) in order to select the scene you want
[CustomEditor (typeof (SceneLoader))]
public class SceneLoaderEditor : Editor
{
private SerializedProperty _scenePath;
private void OnEnable ()
{
_scenePath = serializedObject.FindProperty("ScenePath");
}
public override void OnInpectorGUI ()
{
//Let me shorten it a bit this time ^^
serializedObject.Update();
var availablePaths = ScenePathManager.Instance ? ScenePathManager.Instance.AvailableScenePaths : new List<string>();
var currentIndex = availablePaths.FirstOrDefault(path => string.Equals(path, _scenePath.stringValue)));
var newIndex = EditorGUILayout.PopupField("Scene", currentIndex, availabePaths.ToArray());
_scenePath.stringValue = availablePaths[newIndex];
serializedObject.ApplyModifiedProperties();
}
}
This should than give you a selection dropdown for the scene.
Note this might, however, without the object reference as backing field break evem faster of any of those strings or indexes change...
But you could use this with your manager also without the whole SceneAsset approach but only for simple strings.
Typed on my smartphone so no warranty but I hope I make my point clear

Related

Possible for monobehaviour in one scene to fetch data that will be used in all other scenes? [duplicate]

How can I pass score value from one scene to another?
I've tried the following:
Scene one:
void Start () {
score = 0;
updateScoreView ();
StartCoroutine (DelayLoadlevel(20));
}
public void updateScoreView(){
score_text.text = "The Score: "+ score;
}
public void AddNewScore(int NewscoreValue){
score = score + NewscoreValue;
updateScoreView ();
}
IEnumerator DelayLoadlevel(float seconds){
yield return new WaitForSeconds(10);
secondsLeft = seconds;
loadingStart = true;
do {
yield return new WaitForSeconds(1);
} while(--secondsLeft >0);
// here I should store my last score before move to level two
PlayerPrefs.SetInt ("player_score", score);
Application.LoadLevel (2);
}
Scene two:
public Text score_text;
private int old_score;
// Use this for initialization
void Start () {
old_score = PlayerPrefs.GetInt ("player_score");
score_text.text = "new score" + old_score.ToString ();
}
but nothing displayed on screen, and there's no error.
Is this the correct way to pass data ?
I am using Unity 5 free edition, develop game for Gear VR (meaning the game will run in android devices).
Any suggestion?
There are many ways to do this but the solution to this depends on the type of data you want to pass between scenes. Components/Scripts and GameObjects are destroyed when new scene is loaded and even when marked as static.
In this answer you can find
Use the static keyword
Use DontDestroyOnLoad
Store the data local
3a PlayerPrefs
3b serialize to XML/JSON/Binary and use FileIO
1. Use the static keyword.
Use this method if the variable to pass to the next scene is not a component, does not inherit from MonoBehaviour and is not a GameObject then make the variable to be static.
Built-in primitive data types such as int, bool, string, float, double. All those variables can be made a static variable.
Example of built-in primitive data types that can be marked as static:
static int counter = 0;
static bool enableAudio = 0;
static float timer = 100;
These should work without problems.
Example of Objects that can be marked as static:
public class MyTestScriptNoMonoBehaviour
{
}
then
static MyTestScriptNoMonoBehaviour testScriptNoMono;
void Start()
{
testScriptNoMono = new MyTestScriptNoMonoBehaviour();
}
Notice that the class does not inherit from MonoBehaviour. This should work.
Example of Objects that cannot be marked as static:
Anything that inherits from Object, Component or GameObject will not work.
1A.Anything that inherits from MonoBehaviour
public class MyTestScript : MonoBehaviour
{
}
then
static MyTestScript testScript;
void Start()
{
testScript = gameObject.AddComponent<MyTestScript>();
}
This will not work because it inherits from MonoBehaviour.
1B.All GameObject:
static GameObject obj;
void Start()
{
obj = new GameObject("My Object");
}
This will not work either because it is a GameObject and GameObject inherit from an Object.
Unity will always destroy its Object even if they are declared with the static keyword.
See #2 for a workaround.
2.Use the DontDestroyOnLoad function.
You only need to use this if the data to keep or pass to the next scene inherits from Object, Component or is a GameObject. This solves the problem described in 1A and 1B.
You can use it to make this GameObject not to destroy when scene unloads:
void Awake()
{
DontDestroyOnLoad(transform.gameObject);
}
You can even use it with the static keyword solve problem from 1A and 1B:
public class MyTestScript : MonoBehaviour
{
}
then
static MyTestScript testScript;
void Awake()
{
DontDestroyOnLoad(transform.gameObject);
}
void Start()
{
testScript = gameObject.AddComponent<MyTestScript>();
}
The testScript variable will now be preserved when new scene loads.
3.Save to local storage then load during next scene.
This method should be used when this is a game data that must be preserved when the game is closed and reopened. Example of this is the player high-score, the game settings such as music volume, objects locations, joystick profile data and so on.
Thare are two ways to save this:
3A.Use the PlayerPrefs API.
Use if you have just few variables to save. Let's say player score:
int playerScore = 80;
And we want to save playerScore:
Save the score in the OnDisable function
void OnDisable()
{
PlayerPrefs.SetInt("score", playerScore);
}
Load it in the OnEnable function
void OnEnable()
{
playerScore = PlayerPrefs.GetInt("score");
}
3B.Serialize the data to json, xml or binaray form then save using one of the C# file API such as File.WriteAllBytes and File.ReadAllBytes to save and load files.
Use this method if there are many variables to save.
General, you need to create a class that does not inherit from MonoBehaviour. This class you should use to hold your game data so that in can be easily serialized or de-serialized.
Example of data to save:
[Serializable]
public class PlayerInfo
{
public List<int> ID = new List<int>();
public List<int> Amounts = new List<int>();
public int life = 0;
public float highScore = 0;
}
Grab the DataSaver class which is a wrapper over File.WriteAllBytes and File.ReadAllBytes that makes saving data easier from this post.
Create new instance:
PlayerInfo saveData = new PlayerInfo();
saveData.life = 99;
saveData.highScore = 40;
Save data from PlayerInfo to a file named "players":
DataSaver.saveData(saveData, "players");
Load data from a file named "players":
PlayerInfo loadedData = DataSaver.loadData<PlayerInfo>("players");
There is another way:
ScriptableObject
ScriptableObjects are basically data containers but may also implement own logic. They "live" only in the Assets like prefabs. They can not be used to store data permanently, but they store the data during one session so they can be used to share data and references between Scenes ... and - something I also often needed - between Scenes and an AnimatorController!
Script
First you need a script similar to MonoBehaviours. A simple example of a ScriptableObject might look like
// fileName is the default name when creating a new Instance
// menuName is where to find it in the context menu of Create
[CreateAssetMenu(fileName = "Data", menuName = "Examples/ExamoleScriptableObject")]
public class ExampleScriptableObject : ScriptableObject
{
public string someStringValue = "";
public CustomDataClass someCustomData = null;
public Transform someTransformReference = null;
// Could also implement some methods to set/read data,
// do stuff with the data like parsing between types, fileIO etc
// Especially ScriptableObjects also implement OnEnable and Awake
// so you could still fill them with permanent data via FileIO at the beginning of your app and store the data via FileIO in OnDestroy !!
}
// If you want the data to be stored permanently in the editor
// and e.g. set it via the Inspector
// your types need to be Serializable!
//
// I intentionally used a non-serializable class here to show that also
// non Serializable types can be passed between scenes
public class CustomDataClass
{
public int example;
public Vector3 custom;
public Dictionary<int, byte[]> data;
}
Create Instances
You can create instances of ScriptableObject either via script
var scriptableObject = ScriptableObject.CreateInstance<ExampleScriptableObject>();
or to make things easier use the [CreateAssetMenu] as shown in the example above.
As this created ScriptabeObject instance lives in the Assets it is not bound to a scene and can therefore be referenced everywhere!
This when you want to share the data between two Scenes or also e.g. the Scene and an AnimatorController all you need to do is reference this ScriptableObject instance in both.
Fill Data
I often use e.g. one component to fill the data like
public class ExampleWriter : MonoBehaviour
{
// Here you drag in the ScriptableObject instance via the Inspector in Unity
[SerializeField] private ExampleScriptableObject example;
public void StoreData(string someString, int someInt, Vector3 someVector, List<byte[]> someDatas)
{
example.someStringValue = someString;
example.someCustomData = new CustomDataClass
{
example = someInt;
custom = someVector;
data = new Dictionary<int, byte[]>();
};
for(var i = 0; i < someDatas.Count; i++)
{
example.someCustomData.data.Add(i, someDatas[i]);
}
example.someTransformReference = transform;
}
}
Consume Data
So after you have written and stored your required data into this ExampleScriptableObject instance every other class in any Scene or AnimatorController or also other ScriptableObjects can read this data on just the same way:
public class ExmpleConsumer : MonoBehaviour
{
// Here you drag in the same ScriptableObject instance via the Inspector in Unity
[SerializeField] private ExampleScriptableObject example;
public void ExampleLog()
{
Debug.Log($"string: {example.someString}", this);
Debug.Log($"int: {example.someCustomData.example}", this);
Debug.Log($"vector: {example.someCustomData.custom}", this);
Debug.Log($"data: There are {example.someCustomData.data.Count} entries in data.", this);
Debug.Log($"The data writer {example.someTransformReference.name} is at position {example.someTransformReference.position}", this);
}
}
Persistence
As said the changes in a ScriptableObject itself are only in the Unity Editor really persistent.
In a build they are only persistent during the same session.
Therefore if needed I often combine the session persistence with some FileIO (as described in this answer's section 3b) for loading and deserializing the values once at session begin (or whenever needed) from the hard drive and serialize and store them to a file once on session end (OnApplicationQuit) or whenever needed.
(This won't work with references of course.)
Besides playerPrefs another dirty way is to preserve an object during level loading by calling DontDestroyOnLoad on it.
DontDestroyOnLoad (transform.gameObject);
Any script attached to the game object will survive and so will the variables in the script.
The DontDestroyOnLoad function is generally used to preserve an entire GameObject, including the components attached to it, and any child objects it has in the hierarchy.
You could create an empty GameObject, and place only the script containing the variables you want preserved on it.
I use a functional approach I call Stateless Scenes.
using UnityEngine;
public class MySceneBehaviour: MonoBehaviour {
private static MySceneParams loadSceneRegister = null;
public MySceneParams sceneParams;
public static void loadMyScene(MySceneParams sceneParams, System.Action<MySceneOutcome> callback) {
MySceneBehaviour.loadSceneRegister = sceneParams;
sceneParams.callback = callback;
UnityEngine.SceneManagement.SceneManager.LoadScene("MyScene");
}
public void Awake() {
if (loadSceneRegister != null) sceneParams = loadSceneRegister;
loadSceneRegister = null; // the register has served its purpose, clear the state
}
public void endScene (MySceneOutcome outcome) {
if (sceneParams.callback != null) sceneParams.callback(outcome);
sceneParams.callback = null; // Protect against double calling;
}
}
[System.Serializable]
public class MySceneParams {
public System.Action<MySceneOutcome> callback;
// + inputs of the scene
}
public class MySceneOutcome {
// + outputs of the scene
}
You can keep global state in the caller's scope, so scene inputs and outputs states can be minimized (makes testing easy). To use it you can use anonymous functions:-
MyBigGameServices services ...
MyBigGameState bigState ...
Splash.loadScene(bigState.player.name, () => {
FirstLevel.loadScene(bigState.player, (firstLevelResult) => {
// do something else
services.savePlayer(firstLevelResult);
})
)}
More info at https://corepox.net/devlog/unity-pattern:-stateless-scenes
There are various way, but assuming that you have to pass just some basic data, you can create a singelton instance of a GameController and use that class to store the data.
and, of course DontDestroyOnLoad is mandatory!
public class GameControl : MonoBehaviour
{
//Static reference
public static GameControl control;
//Data to persist
public float health;
public float experience;
void Awake()
{
//Let the gameobject persist over the scenes
DontDestroyOnLoad(gameObject);
//Check if the control instance is null
if (control == null)
{
//This instance becomes the single instance available
control = this;
}
//Otherwise check if the control instance is not this one
else if (control != this)
{
//In case there is a different instance destroy this one.
Destroy(gameObject);
}
}
Here is the full tutorial with some other example.
you have several options.
The first one I see is to use static variables, which you will not lose their information or value passing from scenes to scenes (since they are not bound to the object). [you lose the information when closing the game, but not when passing between scenes]
the second option is that the player or the object of which you do not want to lose the information, you pass it through the DontDestroyOnLoad function
Here I give you the documentation and the sample code. [You lose the information when you close the game, but not when you go between scenes]
https://docs.unity3d.com/ScriptReference/Object.DontDestroyOnLoad.html
Third is to use the playerPrefab [https://docs.unity3d.com/ScriptReference/PlayerPrefs.html]
that allow you to save information and retrieve it at any time without hanging it even after closing the game [you must be very careful with the latter if you plan to use it to save data even after closing the game since you can lose the data if you close the game suddenly , since player prefab creates a file and retrieves the information from there, but it saves the file at the end or closes the app correctly]

How to save a partly destroyed structure in Unity3D for next level [duplicate]

How can I pass score value from one scene to another?
I've tried the following:
Scene one:
void Start () {
score = 0;
updateScoreView ();
StartCoroutine (DelayLoadlevel(20));
}
public void updateScoreView(){
score_text.text = "The Score: "+ score;
}
public void AddNewScore(int NewscoreValue){
score = score + NewscoreValue;
updateScoreView ();
}
IEnumerator DelayLoadlevel(float seconds){
yield return new WaitForSeconds(10);
secondsLeft = seconds;
loadingStart = true;
do {
yield return new WaitForSeconds(1);
} while(--secondsLeft >0);
// here I should store my last score before move to level two
PlayerPrefs.SetInt ("player_score", score);
Application.LoadLevel (2);
}
Scene two:
public Text score_text;
private int old_score;
// Use this for initialization
void Start () {
old_score = PlayerPrefs.GetInt ("player_score");
score_text.text = "new score" + old_score.ToString ();
}
but nothing displayed on screen, and there's no error.
Is this the correct way to pass data ?
I am using Unity 5 free edition, develop game for Gear VR (meaning the game will run in android devices).
Any suggestion?
There are many ways to do this but the solution to this depends on the type of data you want to pass between scenes. Components/Scripts and GameObjects are destroyed when new scene is loaded and even when marked as static.
In this answer you can find
Use the static keyword
Use DontDestroyOnLoad
Store the data local
3a PlayerPrefs
3b serialize to XML/JSON/Binary and use FileIO
1. Use the static keyword.
Use this method if the variable to pass to the next scene is not a component, does not inherit from MonoBehaviour and is not a GameObject then make the variable to be static.
Built-in primitive data types such as int, bool, string, float, double. All those variables can be made a static variable.
Example of built-in primitive data types that can be marked as static:
static int counter = 0;
static bool enableAudio = 0;
static float timer = 100;
These should work without problems.
Example of Objects that can be marked as static:
public class MyTestScriptNoMonoBehaviour
{
}
then
static MyTestScriptNoMonoBehaviour testScriptNoMono;
void Start()
{
testScriptNoMono = new MyTestScriptNoMonoBehaviour();
}
Notice that the class does not inherit from MonoBehaviour. This should work.
Example of Objects that cannot be marked as static:
Anything that inherits from Object, Component or GameObject will not work.
1A.Anything that inherits from MonoBehaviour
public class MyTestScript : MonoBehaviour
{
}
then
static MyTestScript testScript;
void Start()
{
testScript = gameObject.AddComponent<MyTestScript>();
}
This will not work because it inherits from MonoBehaviour.
1B.All GameObject:
static GameObject obj;
void Start()
{
obj = new GameObject("My Object");
}
This will not work either because it is a GameObject and GameObject inherit from an Object.
Unity will always destroy its Object even if they are declared with the static keyword.
See #2 for a workaround.
2.Use the DontDestroyOnLoad function.
You only need to use this if the data to keep or pass to the next scene inherits from Object, Component or is a GameObject. This solves the problem described in 1A and 1B.
You can use it to make this GameObject not to destroy when scene unloads:
void Awake()
{
DontDestroyOnLoad(transform.gameObject);
}
You can even use it with the static keyword solve problem from 1A and 1B:
public class MyTestScript : MonoBehaviour
{
}
then
static MyTestScript testScript;
void Awake()
{
DontDestroyOnLoad(transform.gameObject);
}
void Start()
{
testScript = gameObject.AddComponent<MyTestScript>();
}
The testScript variable will now be preserved when new scene loads.
3.Save to local storage then load during next scene.
This method should be used when this is a game data that must be preserved when the game is closed and reopened. Example of this is the player high-score, the game settings such as music volume, objects locations, joystick profile data and so on.
Thare are two ways to save this:
3A.Use the PlayerPrefs API.
Use if you have just few variables to save. Let's say player score:
int playerScore = 80;
And we want to save playerScore:
Save the score in the OnDisable function
void OnDisable()
{
PlayerPrefs.SetInt("score", playerScore);
}
Load it in the OnEnable function
void OnEnable()
{
playerScore = PlayerPrefs.GetInt("score");
}
3B.Serialize the data to json, xml or binaray form then save using one of the C# file API such as File.WriteAllBytes and File.ReadAllBytes to save and load files.
Use this method if there are many variables to save.
General, you need to create a class that does not inherit from MonoBehaviour. This class you should use to hold your game data so that in can be easily serialized or de-serialized.
Example of data to save:
[Serializable]
public class PlayerInfo
{
public List<int> ID = new List<int>();
public List<int> Amounts = new List<int>();
public int life = 0;
public float highScore = 0;
}
Grab the DataSaver class which is a wrapper over File.WriteAllBytes and File.ReadAllBytes that makes saving data easier from this post.
Create new instance:
PlayerInfo saveData = new PlayerInfo();
saveData.life = 99;
saveData.highScore = 40;
Save data from PlayerInfo to a file named "players":
DataSaver.saveData(saveData, "players");
Load data from a file named "players":
PlayerInfo loadedData = DataSaver.loadData<PlayerInfo>("players");
There is another way:
ScriptableObject
ScriptableObjects are basically data containers but may also implement own logic. They "live" only in the Assets like prefabs. They can not be used to store data permanently, but they store the data during one session so they can be used to share data and references between Scenes ... and - something I also often needed - between Scenes and an AnimatorController!
Script
First you need a script similar to MonoBehaviours. A simple example of a ScriptableObject might look like
// fileName is the default name when creating a new Instance
// menuName is where to find it in the context menu of Create
[CreateAssetMenu(fileName = "Data", menuName = "Examples/ExamoleScriptableObject")]
public class ExampleScriptableObject : ScriptableObject
{
public string someStringValue = "";
public CustomDataClass someCustomData = null;
public Transform someTransformReference = null;
// Could also implement some methods to set/read data,
// do stuff with the data like parsing between types, fileIO etc
// Especially ScriptableObjects also implement OnEnable and Awake
// so you could still fill them with permanent data via FileIO at the beginning of your app and store the data via FileIO in OnDestroy !!
}
// If you want the data to be stored permanently in the editor
// and e.g. set it via the Inspector
// your types need to be Serializable!
//
// I intentionally used a non-serializable class here to show that also
// non Serializable types can be passed between scenes
public class CustomDataClass
{
public int example;
public Vector3 custom;
public Dictionary<int, byte[]> data;
}
Create Instances
You can create instances of ScriptableObject either via script
var scriptableObject = ScriptableObject.CreateInstance<ExampleScriptableObject>();
or to make things easier use the [CreateAssetMenu] as shown in the example above.
As this created ScriptabeObject instance lives in the Assets it is not bound to a scene and can therefore be referenced everywhere!
This when you want to share the data between two Scenes or also e.g. the Scene and an AnimatorController all you need to do is reference this ScriptableObject instance in both.
Fill Data
I often use e.g. one component to fill the data like
public class ExampleWriter : MonoBehaviour
{
// Here you drag in the ScriptableObject instance via the Inspector in Unity
[SerializeField] private ExampleScriptableObject example;
public void StoreData(string someString, int someInt, Vector3 someVector, List<byte[]> someDatas)
{
example.someStringValue = someString;
example.someCustomData = new CustomDataClass
{
example = someInt;
custom = someVector;
data = new Dictionary<int, byte[]>();
};
for(var i = 0; i < someDatas.Count; i++)
{
example.someCustomData.data.Add(i, someDatas[i]);
}
example.someTransformReference = transform;
}
}
Consume Data
So after you have written and stored your required data into this ExampleScriptableObject instance every other class in any Scene or AnimatorController or also other ScriptableObjects can read this data on just the same way:
public class ExmpleConsumer : MonoBehaviour
{
// Here you drag in the same ScriptableObject instance via the Inspector in Unity
[SerializeField] private ExampleScriptableObject example;
public void ExampleLog()
{
Debug.Log($"string: {example.someString}", this);
Debug.Log($"int: {example.someCustomData.example}", this);
Debug.Log($"vector: {example.someCustomData.custom}", this);
Debug.Log($"data: There are {example.someCustomData.data.Count} entries in data.", this);
Debug.Log($"The data writer {example.someTransformReference.name} is at position {example.someTransformReference.position}", this);
}
}
Persistence
As said the changes in a ScriptableObject itself are only in the Unity Editor really persistent.
In a build they are only persistent during the same session.
Therefore if needed I often combine the session persistence with some FileIO (as described in this answer's section 3b) for loading and deserializing the values once at session begin (or whenever needed) from the hard drive and serialize and store them to a file once on session end (OnApplicationQuit) or whenever needed.
(This won't work with references of course.)
Besides playerPrefs another dirty way is to preserve an object during level loading by calling DontDestroyOnLoad on it.
DontDestroyOnLoad (transform.gameObject);
Any script attached to the game object will survive and so will the variables in the script.
The DontDestroyOnLoad function is generally used to preserve an entire GameObject, including the components attached to it, and any child objects it has in the hierarchy.
You could create an empty GameObject, and place only the script containing the variables you want preserved on it.
I use a functional approach I call Stateless Scenes.
using UnityEngine;
public class MySceneBehaviour: MonoBehaviour {
private static MySceneParams loadSceneRegister = null;
public MySceneParams sceneParams;
public static void loadMyScene(MySceneParams sceneParams, System.Action<MySceneOutcome> callback) {
MySceneBehaviour.loadSceneRegister = sceneParams;
sceneParams.callback = callback;
UnityEngine.SceneManagement.SceneManager.LoadScene("MyScene");
}
public void Awake() {
if (loadSceneRegister != null) sceneParams = loadSceneRegister;
loadSceneRegister = null; // the register has served its purpose, clear the state
}
public void endScene (MySceneOutcome outcome) {
if (sceneParams.callback != null) sceneParams.callback(outcome);
sceneParams.callback = null; // Protect against double calling;
}
}
[System.Serializable]
public class MySceneParams {
public System.Action<MySceneOutcome> callback;
// + inputs of the scene
}
public class MySceneOutcome {
// + outputs of the scene
}
You can keep global state in the caller's scope, so scene inputs and outputs states can be minimized (makes testing easy). To use it you can use anonymous functions:-
MyBigGameServices services ...
MyBigGameState bigState ...
Splash.loadScene(bigState.player.name, () => {
FirstLevel.loadScene(bigState.player, (firstLevelResult) => {
// do something else
services.savePlayer(firstLevelResult);
})
)}
More info at https://corepox.net/devlog/unity-pattern:-stateless-scenes
There are various way, but assuming that you have to pass just some basic data, you can create a singelton instance of a GameController and use that class to store the data.
and, of course DontDestroyOnLoad is mandatory!
public class GameControl : MonoBehaviour
{
//Static reference
public static GameControl control;
//Data to persist
public float health;
public float experience;
void Awake()
{
//Let the gameobject persist over the scenes
DontDestroyOnLoad(gameObject);
//Check if the control instance is null
if (control == null)
{
//This instance becomes the single instance available
control = this;
}
//Otherwise check if the control instance is not this one
else if (control != this)
{
//In case there is a different instance destroy this one.
Destroy(gameObject);
}
}
Here is the full tutorial with some other example.
you have several options.
The first one I see is to use static variables, which you will not lose their information or value passing from scenes to scenes (since they are not bound to the object). [you lose the information when closing the game, but not when passing between scenes]
the second option is that the player or the object of which you do not want to lose the information, you pass it through the DontDestroyOnLoad function
Here I give you the documentation and the sample code. [You lose the information when you close the game, but not when you go between scenes]
https://docs.unity3d.com/ScriptReference/Object.DontDestroyOnLoad.html
Third is to use the playerPrefab [https://docs.unity3d.com/ScriptReference/PlayerPrefs.html]
that allow you to save information and retrieve it at any time without hanging it even after closing the game [you must be very careful with the latter if you plan to use it to save data even after closing the game since you can lose the data if you close the game suddenly , since player prefab creates a file and retrieves the information from there, but it saves the file at the end or closes the app correctly]

Unity EditorWindow OnGUI doesn't save data for List<string[]> types

It appears that anything I add to a List<string[]> will get added, but when I save any scripts and Unity does compiles everything, the items in the list disappears.
Here is a simple class I wrote that just displays a window and adds labels according to how many items are in the list:
public class TestEditorWindow : EditorWindow
{
string windowLabel = "Test Window";
[SerializeField] List<string[]> myList = new List<string[]>();
[MenuItem("Tools/My Window")]
static void Init()
{
TestEditorWindow myWindow = (TestEditorWindow)GetWindow(typeof(TestEditorWindow));
myWindow.Show();
}
private void OnGUI()
{
GUILayout.Label(windowLabel, EditorStyles.boldLabel);
EditorGUILayout.Separator();
GUILayout.BeginVertical("box", GUILayout.ExpandWidth(true));
for(int i = 0; i < myList.Count; i++)
{
EditorGUILayout.LabelField("Stupid");
}
if(GUILayout.Button("+", GUILayout.MaxWidth(30)))
{
//myList.Add(new string[2]); //<-- Also tried it this way
myList.Add(new string[] { "" });
}
GUILayout.EndVertical();
}
}
The window shows and every time I hit the button a new label is added to the window, but as soon as Unity compiles anything, the values go away.
If I change the list to List<string> it behaves as intended
I've also tried setting up the list like so and got the same results:
[SerializeField] static List<string[]> myList;
[MenuItem("Tools/My Window")]
static void Init()
{
myList = new List<string[]>();
TestEditorWindow myWindow = (TestEditorWindow)GetWindow(typeof(TestEditorWindow));
myWindow.Show();
}
Am I doing something wrong with how I'm loading the list?
Unity cannot serialize multidimensional collections.
There is a work around though.
Create a new class that contains the string array, and create a list using that type.
[System.Serializable]
public class StringArray
{
public string[] array;
}
and in your window use:
public List<StringArray> myList = new List<StringArray>();

How can i store or read a animation clip data in runtime?

I'm working on a small program that can modify the animation at run time(Such as when you run faster the animation not only play faster but also with larger movement). So i need to get the existing animation, change its value, then send it back.
I found it is interesting that i can set a new curve to the animation, but i can't get access to what i already have. So I either write a file to store my animation curve (as text file for example), or i find someway to read the animation on start up.
I tried to use
AnimationUtility.GetCurveBindings(AnimationCurve);
It worked in my testing, but in some page it says this is a "Editor code", that if i build the project into a standalone program it will not work anymore. Is that true? If so, is there any way to get the curve at run time?
Thanks to the clearify from Benjamin Zach and suggestion from TehMightyPotato
I'd like to keep the idea about modifying the animation at runtime. Because it could adapt to more situations imo.
My idea for now is to write a piece of editor code that can read from the curve in Editor and output all necesseary information about the curve (keyframes) into a text file. Then read that file at runtime and create new curve to overwrite the existing one. I will leave this question open for a few days and check it to see if anyone has a better idea about it.
As said already AnimationUtility belongs to the UnityEditor namespace. This entire namespace is completely stripped of in a build and nothing in it will be available in the final app but only within the Unity Editor.
Store AnimationCurves to file
In order to store all needed information to a file you could have a script for once serializing your specific animation curve(s) in the editor before building using e.g. BinaryFormatter.Serialize. Then later on runtime you can use BinaryFormatter.Deserialize for returning the info list again.
If you wanted it more editable you could as well use e.g. JSON or XML of course
UPDATE: In general Stop using BinaryFormatter!
In the newest Unity versions the Newtonsoft Json.NET package comes already preinstalled so simply rather use JSON
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using Unity.Plastic.Newtonsoft.Json;
using UnityEditor;
using UnityEngine;
using Object = UnityEngine.Object;
public class AnimationCurveManager : MonoBehaviour
{
[Serializable]
public sealed class ClipInfo
{
public int ClipInstanceID;
public List<CurveInfo> CurveInfos = new List<CurveInfo>();
// default constructor is sometimes required for (de)serialization
public ClipInfo() { }
public ClipInfo(Object clip, List<CurveInfo> curveInfos)
{
ClipInstanceID = clip.GetInstanceID();
CurveInfos = curveInfos;
}
}
[Serializable]
public sealed class CurveInfo
{
public string PathKey;
public List<KeyFrameInfo> Keys = new List<KeyFrameInfo>();
public WrapMode PreWrapMode;
public WrapMode PostWrapMode;
// default constructor is sometimes required for (de)serialization
public CurveInfo() { }
public CurveInfo(string pathKey, AnimationCurve curve)
{
PathKey = pathKey;
foreach (var keyframe in curve.keys)
{
Keys.Add(new KeyFrameInfo(keyframe));
}
PreWrapMode = curve.preWrapMode;
PostWrapMode = curve.postWrapMode;
}
}
[Serializable]
public sealed class KeyFrameInfo
{
public float Value;
public float InTangent;
public float InWeight;
public float OutTangent;
public float OutWeight;
public float Time;
public WeightedMode WeightedMode;
// default constructor is sometimes required for (de)serialization
public KeyFrameInfo() { }
public KeyFrameInfo(Keyframe keyframe)
{
Value = keyframe.value;
InTangent = keyframe.inTangent;
InWeight = keyframe.inWeight;
OutTangent = keyframe.outTangent;
OutWeight = keyframe.outWeight;
Time = keyframe.time;
WeightedMode = keyframe.weightedMode;
}
}
// I know ... singleton .. but what choices do we have? ;)
private static AnimationCurveManager _instance;
public static AnimationCurveManager Instance
{
get
{
// lazy initialization/instantiation
if (_instance) return _instance;
_instance = FindObjectOfType<AnimationCurveManager>();
if (_instance) return _instance;
_instance = new GameObject("AnimationCurveManager").AddComponent<AnimationCurveManager>();
return _instance;
}
}
// Clips to manage e.g. reference these via the Inspector
public List<AnimationClip> clips = new List<AnimationClip>();
// every animation curve belongs to a specific clip and
// a specific property of a specific component on a specific object
// for making this easier lets simply use a combined string as key
private string CurveKey(string pathToObject, Type type, string propertyName)
{
return $"{pathToObject}:{type.FullName}:{propertyName}";
}
public List<ClipInfo> ClipCurves = new List<ClipInfo>();
private string filePath = Path.Combine(Application.streamingAssetsPath, "AnimationCurves.dat");
private void Awake()
{
if (_instance && _instance != this)
{
Debug.LogWarning("Multiple Instances of AnimationCurveManager! Will ignore this one!", this);
return;
}
_instance = this;
DontDestroyOnLoad(gameObject);
// load infos on runtime
LoadClipCurves();
}
#if UNITY_EDITOR
// Call this from the ContextMenu (or later via editor script)
[ContextMenu("Save Animation Curves")]
private void SaveAnimationCurves()
{
ClipCurves.Clear();
foreach (var clip in clips)
{
var curveInfos = new List<CurveInfo>();
ClipCurves.Add(new ClipInfo(clip, curveInfos));
foreach (var binding in AnimationUtility.GetCurveBindings(clip))
{
var key = CurveKey(binding.path, binding.type, binding.propertyName);
var curve = AnimationUtility.GetEditorCurve(clip, binding);
curveInfos.Add(new CurveInfo(key, curve));
}
}
// create the StreamingAssets folder if it does not exist
try
{
if (!Directory.Exists(Application.streamingAssetsPath))
{
Directory.CreateDirectory(Application.streamingAssetsPath);
}
}
catch (IOException ex)
{
Debug.LogError(ex.Message);
}
// create a new file e.g. AnimationCurves.dat in the StreamingAssets folder
var json = JsonConvert.SerializeObject(ClipCurves);
File.WriteAllText(filePath, json);
AssetDatabase.Refresh();
}
#endif
private void LoadClipCurves()
{
if (!File.Exists(filePath))
{
Debug.LogErrorFormat(this, "File \"{0}\" not found!", filePath);
return;
}
var fileStream = new FileStream(filePath, FileMode.Open);
var json = File.ReadAllText(filePath);
ClipCurves = JsonConvert.DeserializeObject<List<ClipInfo>>(json);
}
// now for getting a specific clip's curves
public AnimationCurve GetCurve(AnimationClip clip, string pathToObject, Type type, string propertyName)
{
// either not loaded yet or error -> try again
if (ClipCurves == null || ClipCurves.Count == 0) LoadClipCurves();
// still null? -> error
if (ClipCurves == null || ClipCurves.Count == 0)
{
Debug.LogError("Apparantly no clipCurves loaded!");
return null;
}
var clipInfo = ClipCurves.FirstOrDefault(ci => ci.ClipInstanceID == clip.GetInstanceID());
// does this clip exist in the dictionary?
if (clipInfo == null)
{
Debug.LogErrorFormat(this, "The clip \"{0}\" was not found in clipCurves!", clip.name);
return null;
}
var key = CurveKey(pathToObject, type, propertyName);
var curveInfo = clipInfo.CurveInfos.FirstOrDefault(c => string.Equals(c.PathKey, key));
// does the curve key exist for the clip?
if (curveInfo == null)
{
Debug.LogErrorFormat(this, "The key \"{0}\" was not found for clip \"{1}\"", key, clip.name);
return null;
}
var keyframes = new Keyframe[curveInfo.Keys.Count];
for (var i = 0; i < curveInfo.Keys.Count; i++)
{
var keyframe = curveInfo.Keys[i];
keyframes[i] = new Keyframe(keyframe.Time, keyframe.Value, keyframe.InTangent, keyframe.OutTangent, keyframe.InWeight, keyframe.OutWeight)
{
weightedMode = keyframe.WeightedMode
};
}
var curve = new AnimationCurve(keyframes)
{
postWrapMode = curveInfo.PostWrapMode,
preWrapMode = curveInfo.PreWrapMode
};
// otherwise finally return the AnimationCurve
return curve;
}
}
Then you can do something like e.e.
AnimationCurve originalCurve = AnimationCurvesManager.Instance.GetCurve(
clip,
"some/relative/GameObject",
typeof<SomeComponnet>,
"somePropertyName"
);
the second parameter pathToObject is an empty string if the property/component is attached to the root object itself. Otherwise it is given in the hierachy path as usual for Unity like e.g. "ChildName/FurtherChildName".
Now you can change the values and assign a new curve on runtime.
Assigning new curve on runtime
On runtime you can use animator.runtimeanimatorController in order to retrieve a RuntimeAnimatorController reference.
It has a property animationClips which returns all AnimationClips assigned to this controller.
You could then use e.g. Linq FirstOrDefault in order to find a specific AnimationClip by name and finally use AnimationClip.SetCurve to assign a new animation curve to a certain component and property.
E.g. something like
// you need those of course
string clipName;
AnimationCurve originalCurve = AnimationCurvesManager.Instance.GetCurve(
clip,
"some/relative/GameObject",
typeof<SomeComponnet>,
"somePropertyName"
);
// TODO
AnimationCurve newCurve = SomeMagic(originalCurve);
// get the animator reference
var animator = animatorObject.GetComponent<Animator>();
// get the runtime Animation controller
var controller = animator.runtimeAnimatorController;
// get all clips
var clips = controller.animationClips;
// find the specific clip by name
// alternatively you could also get this as before using a field and
// reference the according script via the Inspector
var someClip = clips.FirstOrDefault(clip => string.Equals(clipName, clip.name));
// was found?
if(!someClip)
{
Debug.LogWarningFormat(this, "There is no clip called {0}!", clipName);
return;
}
// assign a new curve
someClip.SetCurve("relative/path/to/some/GameObject", typeof(SomeComponnet), "somePropertyName", newCurve);
Note: Typed on smartphone so no warranty! But I hope the idea gets clear...
Also checkout the example in AnimationClip.SetCurve → You might want to use the Animation component instead of an Animator in your specific use case.

Is there any way to hide the "Object picker" of an EditorGUILayout.ObjectField in Unity Isnpector?

I'm just asking if there is any possibility to hide the "Object Picker" (The little knob/menu next to an ObjectField) in a custom Inspector. I have some cases where changes are disabled (DisableGroup) and I would like to also hide the knob while the content can not be changed anyway.
Also to make things easier for users I think about making the field higher (EditorGUIUtility.SingleLineHeight * 2) -> the picker gets stretched as well what looks kind of shitty ^^
example:
using UnityEditor;
using UnityEngine;
public class Bla : MonoBehaviour {
[CustomEditor(typeof(Bla))]
public class BlaEditor : Editor
{
private AudioClip _clip;
public override void OnInspectorGUI()
{
EditorGUI.BeginDisabledGroup(true);
// do some magic to hide the object picker
_clip = (AudioClip) EditorGUILayout.ObjectField("some label", _clip, typeof(AudioClip), false);
EditorGUI.EndDisabledGroup();
}
}
}
I want to stick with an ObjectField rather than a simple Label for two reasons:
Even on a disabled `ObjectField| the "ping" functionality is still working. (If you click on it, the according asset gets highlighted in the Hierarchy.) This is not the case obviously with a label.
The user should not get confused with completely different looking controls but I rather only want to remove some unnecessary clutter.
You might find a solution to hide the object picker by usage of stylesheets.
If all you want is just to display some reference, you can use a simple button basically styled as text field, adding an image and ping the object from code yourself.
using UnityEngine;
namespace Test
{
public class TestBehaviour : MonoBehaviour
{
[SerializeField] private bool _audioEnabled;
[SerializeField] private AudioClip _audioClip;
}
}
editor:
using System.Reflection;
using UnityEditor;
using UnityEditor.Experimental.UIElements;
using UnityEngine;
namespace Test
{
[CustomEditor(typeof(TestBehaviour))]
public class TestBehaviourEditor : Editor
{
private SerializedProperty _clipProp;
private SerializedProperty _audioEnabledProp;
private ObjectField m_ObjectField;
private const BindingFlags FIELD_BINDING_FLAGS = BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic;
private void OnEnable()
{
_clipProp = serializedObject.FindProperty("_audioClip");
_audioEnabledProp = serializedObject.FindProperty("_audioEnabled");
}
public override void OnInspectorGUI()
{
serializedObject.Update();
EditorGUILayout.PropertyField(_audioEnabledProp);
if(_audioEnabledProp.boolValue)
EditorGUILayout.PropertyField(_clipProp);
else
{
//TODO: calculate proper layout
var type = target.GetType().GetField(_clipProp.propertyPath, FIELD_BINDING_FLAGS).FieldType;
var clip = _clipProp.objectReferenceValue;
var guiContent = EditorGUIUtility.ObjectContent(clip, type);
EditorGUILayout.BeginHorizontal();
EditorGUILayout.LabelField("Fake ObjectField Button");
var style = new GUIStyle("TextField");
style.fixedHeight = 16;
style.imagePosition = clip ? ImagePosition.ImageLeft : ImagePosition.TextOnly;
if (GUILayout.Button(guiContent, style ) && clip)
EditorGUIUtility.PingObject(clip);
EditorGUILayout.EndHorizontal();
}
serializedObject.ApplyModifiedProperties();
}
}
}
I've got another solution: Ignore the pick result of this object picker, and although the picker is still here and can show the picker window, pick up will not work.
(I still don't know how to hide this button and the pickerwindow, > <), and this answer was posted at unity answers as well.
Here is the code:
// Register another callback of this object field
myObjectField.RegisterValueChangedCallback(DefaultObjectFieldCallback);
// In this callback, is a trick
private void DefaultAssetFieldCallback(ChangeEvent<UnityEngine.Object> evt) {
// unregister the callback first
myObjectField.UnregisterValueChangedCallback(DefaultAssetFieldCallback);
// trick: set back to the old value
m_ConfigAssetField.value = evt.previousValue;
// register the callback again
myObjectField.RegisterValueChangedCallback(DefaultObjectFieldCallback);
}
I needed to do something similar and found a way to do this by stepping through the ObjectField in the UIToolkit Debugger. The type of the little object selector button is hidden, so we cant really work with the class itself.
This solution is using UIToolkit, so unfortunately it won't work with Unity Editor IMGUI, but hopefully it will be helpful to someone.
The Solution in easy steps:
Find out what the uss style class of the ObjectFieldSelector is.
Recursively search the children of the ObjectField for a VisualElement containing the uss style class.
Set visibility to false.
All done!
using UnityEditor;
using UnityEditor.UIElements;
using UnityEngine.UIElements;
[CustomPropertyDrawer(typeof(MyClass))]
public class MyClassDrawer: PropertyDrawer
{
public override VisualElement CreatePropertyGUI(SerializedProperty property)
{
var field = new ObjectField(property.displayName);
field.objectType = typeof(MyClass);
var button = FindChild(field, "unity-object-field__selector");
button.visible = false;
return field;
}
private VisualElement FindChild(VisualElement parent, string ussClass)
{
foreach(var child in parent.Children())
{
if (child.ClassListContains(ussClass))
return child;
var subChild = FindChild(child, ussClass);
if (subChild != null)
return subChild;
}
return null;
}
}