Trace and Watch (wt) on breakpoint in WinDbg - windbg

I'd like to get a trace of function calls inside comctl32.dll beginning when the left mouse button is pressed on a tree control item and while the mouse button is held down.
I can set a breakpoint on comctl32!TV_ButtonDown and then use wt when the breakpoint is hit but this requires me to release the mouse button and interact with WinDbg. When I try to use a command string for my breakpoint like this: bp comctl32!TV_ButtonDown "wt -m comctl32", the tracing stops immediately after starting upon hitting the breakpoint:
Tracing COMCTL32!TV_ButtonDown to return address 00007ffd`57a48f1d
0 instructions were executed in 0 events (0 from other threads)
Function Name Invocations MinInst MaxInst AvgInst
0 system calls were executed
COMCTL32!TV_ButtonDown+0x5:
00007ffd`57b03bd9 48896c2418 mov qword ptr [rsp+18h],rbp ss:000000b7`746f8b00=0000000000000201
Is what I am attempting possible? Are there any alternatives?

not 64 bit but 32 bit
supply the end address
( top of stack or return address is what i give #$ra and don't release the mouse
it is not mandatory that you give #$ra but you should be sure that you will reach the end address
eventually without releasing the mouse lsft button)
0:000> bl
0 e Disable Clear 6e57a2ee 0001 (0001) 0:**** COMCTL32!TV_ButtonDown "wt -m comctl32 #$ra"
0:000> g
17 0 [ 0] COMCTL32!TV_ButtonDown
10 0 [ 1] COMCTL32!GetMessagePosClient
3 0 [ 2] USER32!GetMessagePos
18 3 [ 1] COMCTL32!GetMessagePosClient
17 0 [ 2] USER32!ScreenToClient
25 20 [ 1] COMCTL32!GetMessagePosClient
20 45 [ 0] COMCTL32!TV_ButtonDown
22 0 [ 1] COMCTL32!TV_DismissEdit
14 0 [ 2] USER32!IsWindowVisible
26 14 [ 1] COMCTL32!TV_DismissEdit
10 0 [ 2] USER32!GetDlgCtrlID
33 24 [ 1] COMCTL32!TV_DismissEdit
10 0 [ 2] USER32!SetWindowLongW
48 34 [ 1] COMCTL32!TV_DismissEdit
16 0 [ 2] COMCTL32!TV_InvalidateItem
40 0 [ 3] COMCTL32!TV_GetItemRect
24 40 [ 2] COMCTL32!TV_InvalidateItem
4 0 [ 3] USER32!NtUserRedrawWindow
27 44 [ 2] COMCTL32!TV_InvalidateItem
52 105 [ 1] COMCTL32!TV_DismissEdit
4 0 [ 2] USER32!NtUserShowWindow
58 109 [ 1] COMCTL32!TV_DismissEdit
34 0 [ 2] COMCTL32!CCSendNotify
25 0 [ 3] USER32!GetParent
40 25 [ 2] COMCTL32!CCSendNotify
18 0 [ 3] USER32!GetWindow
44 43 [ 2] COMCTL32!CCSendNotify
10 0 [ 3] USER32!GetDlgCtrlID
57 53 [ 2] COMCTL32!CCSendNotify
24 0 [ 3] USER32!GetWindowThreadProcessId
60 77 [ 2] COMCTL32!CCSendNotify
1 0 [ 3] kernel32!GetCurrentProcessIdStub
1 0 [ 3] kernel32!GetCurrentProcessId
3 0 [ 3] KERNELBASE!GetCurrentProcessId
87 82 [ 2] COMCTL32!CCSendNotify
24 0 [ 3] USER32!SendMessageW
109 106 [ 2] COMCTL32!CCSendNotify
16 0 [ 3] COMCTL32!InOutAtoW
118 122 [ 2] COMCTL32!CCSendNotify
3 0 [ 3] COMCTL32!__security_check_cookie
120 125 [ 2] COMCTL32!CCSendNotify
67 354 [ 1] COMCTL32!TV_DismissEdit
4 0 [ 2] USER32!NtUserDestroyWindow
75 358 [ 1] COMCTL32!TV_DismissEdit
3 0 [ 2] COMCTL32!__security_check_cookie
77 361 [ 1] COMCTL32!TV_DismissEdit
27 483 [ 0] COMCTL32!TV_ButtonDown
3 0 [ 1] COMCTL32!__security_check_cookie
29 486 [ 0] COMCTL32!TV_ButtonDown
515 instructions were executed in 514 events (0 from other threads)
Function Name Invocations MinInst MaxInst AvgInst
COMCTL32!CCSendNotify 1 120 120 120
COMCTL32!GetMessagePosClient 1 25 25 25
COMCTL32!InOutAtoW 1 16 16 16
COMCTL32!TV_ButtonDown 1 29 29 29
COMCTL32!TV_DismissEdit 1 77 77 77
COMCTL32!TV_GetItemRect 1 40 40 40
COMCTL32!TV_InvalidateItem 1 27 27 27
COMCTL32!__security_check_cookie 3 3 3 3
KERNELBASE!GetCurrentProcessId 1 3 3 3
USER32!GetDlgCtrlID 2 10 10 10
USER32!GetMessagePos 1 3 3 3
USER32!GetParent 1 25 25 25
USER32!GetWindow 1 18 18 18
USER32!GetWindowThreadProcessId 1 24 24 24
USER32!IsWindowVisible 1 14 14 14
USER32!NtUserDestroyWindow 1 4 4 4
USER32!NtUserRedrawWindow 1 4 4 4
USER32!NtUserShowWindow 1 4 4 4
USER32!ScreenToClient 1 17 17 17
USER32!SendMessageW 1 24 24 24
USER32!SetWindowLongW 1 10 10 10
kernel32!GetCurrentProcessId 1 1 1 1
kernel32!GetCurrentProcessIdStub 1 1 1 1
0 system calls were executed
eax=00000000 ebx=00000201 ecx=422f0fd7 edx=77a370f4 esi=002d9590 edi=00000200
eip=6e542888 esp=0012fcc4 ebp=0012fd00 iopl=0 nv up ei pl zr na pe nc
cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000246
COMCTL32!TV_WndProc+0x577:
6e542888 e90a060000 jmp COMCTL32!TV_WndProc+0x5de (6e542e97)

Related

Adding 0 for missing data rather than excluding the category in matlab

I have the two following tables of data, one named data1, the other named data2. The left-hand column is a categorical variable and the right hand column is frequency I would like to rewrite these tables but where there are missing categories in the left-hand column I would like it to put in the correct missing category and then put a '0' in the right-hand frequency column.
data1 = [
1 170
2 120
3 100
4 40
5 30
6 20
7 10
9 8
10 2
11 1
14 1
];
data2 = [
1 240
2 200
3 180
4 60
5 50
6 40
7 30
8 20
9 8
10 2
12 1
19 1
];
To be clearer I will explain with an example. In data1, 8 12 and 13 are missing in the left-hand column. I would like matlab to recreate this table but with 0 values for 8, 12 and 13 so it looks as follows. I would also like it to have additional empty categories after '14' because data2 is longer and has more categories. I have also included what data2 should look like with filled in values.
data1 = [
1 170
2 120
3 100
4 40
5 30
6 20
7 10
8 0
9 8
10 2
11 1
12 0
13 0
14 1
15 0
16 0
17 0
18 0
19 0
];
data2 = [
1 240
2 200
3 180
4 60
5 50
6 40
7 30
8 20
9 8
10 2
11 0
12 1
13 0
14 0
15 0
16 0
17 0
18 0
19 1
];
I have a handful of datasets which generally all start with 1,2,3,4,5...etc but then they all have slightly different categories on the left-hand column, because where values are missing it just omits the category rather than putting 0. How do i write a code so that it automatically fills in any blanks with a 0. It would be good if the code could identify what the 'highest' number of categories is amongst all the datasets and then fill in blanks based on this.
my aim is to put together a grouped bar chart with data series that are all the same length.
UPDATED OUTPUT WITH 3 DATASETS
this is what your AllJoins code outputs in my matlab:
A table1 table2 table3
__ ______ ______ ______
1 170 240 2400
2 120 200 2000
3 100 180 0
4 40 60 0
5 30 50 0
6 20 40 0
7 10 30 0
8 0 20 0
9 8 8 0
10 2 2 0
11 1 0 0
12 0 1 0
14 1 0 0
19 0 1 0
20 0 0 1800
I would like the code to fill in the missing consecutive numbers in column A so that it looks as follows:
A table1 table2 table3
__ ______ ______ ______
1 170 240 2400
2 120 200 2000
3 100 180 0
4 40 60 0
5 30 50 0
6 20 40 0
7 10 30 0
8 0 20 0
9 8 8 0
10 2 2 0
11 1 0 0
12 0 1 0
13 0 0 0
14 1 0 0
15 0 0 0
16 0 0 0
17 0 0 0
18 0 0 0
19 0 1 0
20 0 0 1800
You can convert the datasets to a table and then use outerjoin. Then you can replace the NaNs with whatever you want using fillmissing.
table1 = array2table(data1);
table1.Properties.VariableNames = {'A', 'B'};
table2 = array2table(data2);
table2.Properties.VariableNames = {'A', 'B'};
newTable = outerjoin(table1, table2, 'LeftKeys', {'A'}, 'RightKeys', {'A'}, 'MergeKeys', true)
which produces:
A B_table1 B_table2
__ ________ ________
1 170 240
2 120 200
3 100 180
4 40 60
5 30 50
6 20 40
7 10 30
8 NaN 20
9 8 8
10 2 2
11 1 NaN
12 NaN 1
14 1 NaN
19 NaN 1
And then get your zeros with newTable2 = fillmissing(newTable, 'constant', 0), which prints:
A B_table1 B_table2
__ ________ ________
1 170 240
2 120 200
3 100 180
4 40 60
5 30 50
6 20 40
7 10 30
8 0 20
9 8 8
10 2 2
11 1 0
12 0 1
14 1 0
19 0 1
UPDATE
To combine multiple tables, you can either nest the outerjoin or write a function to loop over it (see similar Matlab forum question). Here's an example.
Given data1 and data2 in OP, plus a new data3:
data3 = [
1 2400
2 2000
20 1800
];
Contents of myscript.m:
table1 = MakeTable(data1);
table2 = MakeTable(data2);
table3 = MakeTable(data3);
AllJoins = MultiOuterJoin(table1, table2, table3);
% Functions
function Table = MakeTable(Array)
Table = array2table(Array);
Table.Properties.VariableNames = {'A', 'B'}; % set your column names, e.g. {'freq', 'count'}
end
function Joined = MultiOuterJoin(varargin)
Joined = varargin{1};
Joined.Properties.VariableNames{end} = inputname(1); % set #2 column name to be based on table name
for k = 2:nargin
Joined = outerjoin(Joined, varargin{k}, 'LeftKeys', {'A'}, 'RightKeys', {'A'}, 'MergeKeys', true);
name = inputname(k);
Joined.Properties.VariableNames{end} = name; % set merged column name to be based on table name
end
end
Which returns AllJoins:
A table1 table2 table3
__ ______ ______ ______
1 170 240 2400
2 120 200 2000
3 100 180 NaN
4 40 60 NaN
5 30 50 NaN
6 20 40 NaN
7 10 30 NaN
8 0 20 NaN
9 8 8 NaN
10 2 2 NaN
11 1 0 NaN
12 0 1 NaN
13 0 0 NaN
14 1 0 NaN
15 0 0 NaN
16 0 0 NaN
17 0 0 NaN
18 0 0 NaN
19 0 1 NaN
20 NaN NaN 1800
Feel free to change the maximum length of the array, this is a generic answer. The maximum length is max(data1(:,1)), but you can compute this in any way, e.g. the maximum value of multiple arrays.
% make new data
new_data1=zeros(max(data1(:,1),2));
new_data(:,1)=1:max(data1(:,1));
% Fill data. You can do this in a loop if its easier for you to understand.
% in essence, it says: in all the data1(:,1) indices of new_data's second column, put data1(:,2)
new_data(data1(:,1),2)=data1(:,2);

How to get list of neighbors with distance N from index in matrix? [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Want to improve this question? Update the question so it focuses on one problem only by editing this post.
Closed 3 years ago.
Improve this question
I have a matrix like this:
35 1 6 26 19 24
3 32 7 21 23 25
31 9 2 22 27 20
8 28 33 17 10 15
30 5 34 12 14 16
4 36 29 13 18 11
I want a list of neighbors with distance 3 for each cell. For example,
the list of neighbors with distance 3 for (1, 1) is:
[8, 28, 33, 17, 26, 21, 22, 17]
Visual explanation:
[35] 1 6 |26| 19 24
3 32 7 |21| 23 25
31 9 2 |22| 27 20
-------------------
8 28 33 |17| 10 15
-------------------
30 5 34 12 14 16
4 36 29 13 18 11
The list of neighbors with distance 3 for (3, 3) is
[4, 36, 29, 13, 18, 11, 24, 25, 20, 15, 16]
Visual explanation:
35 1 6 26 19 |24|
3 32 7 21 23 |25|
31 9 [2] 22 27 |20|
8 28 33 17 10 |15|
30 5 34 12 14 |16|
------------------------
4 36 29 13 18 |11|
------------------------
Generate an all-zero "index matrix" idx with the same size of your matrix A, and set the "seed" to 1:
A = [ ...
35 1 6 26 19 24; ...
3 32 7 21 23 25; ...
31 9 2 22 27 20; ...
8 28 33 17 10 15; ...
30 5 34 12 14 16; ...
4 36 29 13 18 11 ...
]
idx = zeros(size(A));
idx(3, 2) = 1
We get:
A =
[...]
idx =
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
Now, we use 2-D convolution, i.e. MATLAB's conv2 method to create the correct index matrix w.r.t. to the distance d:
idx = logical(conv2(idx, ones(2*d+1), 'same') - conv2(idx, ones(2*d-1), 'same'))
(Convolution is the key to success.)
Then, we get:
idx =
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1 0
1 1 1 1 1 0
Since we already casted the indices to logical, we can directly access the proper elements in the matrix A:
B = A(idx).'
The final result:
B =
4 36 29 13 19 23 27 10 14 18
Please notice the difference in the result as you wrote (3, 2) in your second example, but actually marked (3, 3) as "seed".
Hope that helps!
Disclaimer: Tested with Octave 5.1.0, but also works with MATLAB Online.

Assign new matrices for a certain condition, in Matlab

I have a matrix,DataFile=8x8. One of those columns(column 6 or "coarse event") can only be 0 or a 1. It will be 0 for a non-stable condition and 1 for a stable condition.Now for the example:
DataFile = [ 11 5 66 1.2 14.1 0 -1 0.1;...
12 6 67 1.4 15.1 0 -1 0.1;...
13 7 68 1.6 16.1 1 -1 0.2;...
14 8 69 1.7 16.5 1 -2 0.1;...
15 9 68 1.6 16.2 0 -1 0.3;...
16 8 66 1.3 15.7 1 -2 0.0;...
17 5 65 1.5 16.1 1 0 0.0;...
18 6 66 1.2 16.6 0 1 1.0];
With slight changes from the code in the comments:
DataFile =[zeros(1,size(DataFile,2)); DataFile; zeros(1,size(DataFile,2))];
startInd = [find(diff(DataFile(:,6))==1)];
endInd = [find(diff(DataFile(:,6)) <0)];
B={};
for n=1:1:numel(endInd)
B(n)={DataFile(startInd(n):endInd(n),:)};
end
FirstBlock=B{1};
SecondBlock=B{2};
The result is 2 matrices(FirstBlock=3x8,SecondBlock=3x8), which wrongfully includes 0's in the 6th column. It should be giving two matrices(dataIs1(1)=2x8 and dataIs1(2)=2x8), with only 1's in the 6th column.
In reality I would like have the a n-amount of matrices, for which the "coarse event" is 1. Thank you for the help!
The magic word is logical indexing:
If you have a Matrix A:
A=[1 2 3 4 5;...
0 6 7 8 9;...
1 7 8 9 10]
you can extact Row 1 and 2 by:
B=A(A(:,1)==1)
Hope thats waht your looking for, have fun.
To seperate the groups we need to know where they start and end:
endInd = [find(diff(A(:,1))<0) size(A,1)]
startInd = [1 find(diff(A(:,1))==1)]
Then assigne the Data to arrays:
B={};
for n=1:1:numel(endInd)
B(n)={A(startInd(n):endInd(n),:)};
end
Edit:
Your new Data:
DataFile = [ 11 5 66 1.2 14.1 0 -1 0.1;...
12 6 67 1.4 15.1 0 -1 0.1;...
13 7 68 1.6 16.1 1 -1 0.2;...
14 8 69 1.7 16.5 1 -2 0.1;...
15 9 68 1.6 16.2 0 -1 0.3;...
16 8 66 1.3 15.7 1 -2 0.0;...
17 5 65 1.5 16.1 1 0 0.0;...
18 6 66 1.2 16.6 0 1 1.0];
I add some padding to avoid mistakes:
DataFile =[zeros(1,size(DataFile,2)); DataFile; zeros(1,size(DataFile,2))]
Now, as before, we look for the starts and ends of the blocks:
endInd = [find(diff(A(:,1)) <0) -1]
startInd = [find(diff(A(:,1))==1)]
Then assigne the Data to a cell in a arrays:
B={};
for n=1:1:numel(endInd)
B(n)={A(startInd(n):endInd(n),:)};
end
If you want to retrive, say, the second block:
secondBlock=B{2};

How to remove all the rows from a matrix that match values in another vector?

I am making an exclude vector, so that the rows containing any value present in the second column of the matrix user from the exclude list are removed. How do I do that efficiently, without using a for loop to iterate through user for each item in exclude one by one?
My code below does not work:
count=0;
% Just showing how I am constructing `exclude`, to show that it can be long.
% So, manually removing each item from `exclude` is not an option.
% And using a for loop to iterate through each element in `exclude` can be inefficient.
for b=1:size(user_cat,1)
if user_cat(b,4)==0
count=count+1;
exclude(count,1) = user_cat(b,1);
end
end
% This is the important line of focus. You can ignore the previous parts.
user = user(user(:,2)~=exclude(:),:);
The last line gives the following error:
Error using ~=
Matrix dimensions must agree.
So, I am having to use this instead:
for b=1:size(exclude,1)
user = user(user(:,2)~=exclude(b,1),:);
end
Example:
user=[1433100000.00000 26 620260 7 1433100000000.00 0 0 2 1 100880 290 23
1433100000.00000 26 620260 7 1433100000000.00 0 0 2 1 100880 290 23
1433100000.00000 25 620160 7 1433100000000.00 0 0 2 1 100880 7274 22
1433100000.00000 21 619910 7 1433100000000.00 24.1190000000000 120.670000000000 2 0 100880 53871 21
1433100000.00000 19 620040 7 1433100000000.00 24.1190000000000 120.670000000000 2 0 100880 22466 21
1433100000.00000 28 619030 7 1433100000000.00 24.6200000000000 120.810000000000 2 0 100880 179960 16
1433100000.00000 28 619630 7 1433100000000.00 24.6200000000000 120.810000000000 2 0 100880 88510 16
1433100000.00000 28 619790 7 1433100000000.00 24.6200000000000 120.810000000000 2 0 100880 12696 16
1433100000.00000 7 36582000 7 1433100000000.00 0 0 2 0 100880 33677 14
1433000000.00000 24 620010 7 1433000000000.00 0 0 2 1 100880 3465 14
1433000000.00000 4 36581000 7 1433000000000.00 0 0 2 0 100880 27809 12
1433000000.00000 20 619960 7 1433000000000.00 0 0 2 1 100880 860 11
1433000000.00000 30 619760 7 1433000000000.00 25.0060000000000 121.510000000000 2 0 100880 34706 10
1433000000.00000 33 619910 7 1433000000000.00 0 0 2 0 100880 15060 9
1433000000.00000 26 619740 6 1433000000000.00 0 0 2 0 100880 52514 8
1433000000.00000 18 619900 6 1433000000000.00 0 0 2 0 100880 21696 8
1433000000.00000 16 619850 6 1433000000000.00 24.9910000000000 121.470000000000 2 0 100880 10505 1
1433000000.00000 16 619880 6 1433000000000.00 24.9910000000000 121.470000000000 2 0 100880 1153 1
1433000000.00000 28 619120 6 1433000000000.00 0 0 2 0 100880 103980 24
1433000000.00000 21 619870 6 1433000000000.00 0 0 2 0 100880 1442 24];
exclude=[ 3
4
7
10
17
18
19
28
30
33 ];
Desired output:
1433100000.00000 26 620260 7 1433100000000.00 0 0 2 1 100880 290 23
1433100000.00000 26 620260 7 1433100000000.00 0 0 2 1 100880 290 23
1433100000.00000 25 620160 7 1433100000000.00 0 0 2 1 100880 7274 22
1433100000.00000 21 619910 7 1433100000000.00 24.1190000000000 120.670000000000 2 0 100880 53871 21
1433000000.00000 24 620010 7 1433000000000.00 0 0 2 1 100880 3465 14
1433000000.00000 20 619960 7 1433000000000.00 0 0 2 1 100880 860 11
1433000000.00000 26 619740 6 1433000000000.00 0 0 2 0 100880 52514 8
1433000000.00000 16 619850 6 1433000000000.00 24.9910000000000 121.470000000000 2 0 100880 10505 1
1433000000.00000 16 619880 6 1433000000000.00 24.9910000000000 121.470000000000 2 0 100880 1153 1
1433000000.00000 21 619870 6 1433000000000.00 0 0 2 0 100880 1442 24
Use ismember to find the indices of the second column of user where elements of exclude exist to get the indices of the rows to be removed. Negate these row indices to get the row indices to be kept and use matrix indexing to keep these rows.
user = user(~ismember(user(:,2),exclude),:);

Matrix multiplication resulting in different values in MATLAB and NUMPY(?) [duplicate]

This question already has answers here:
Matrix multiplication problems - Numpy vs Matlab?
(2 answers)
Closed 7 years ago.
Here's the matrix
>> x = [2 7 5 9 2; 8 3 1 6 10; 4 7 3 10 1; 6 7 10 1 8;2 8 2 5 9]
Matlab gives me
>> mtimes(x',x)
ans =
124 124 94 122 154
124 220 145 198 179
94 145 139 101 121
122 198 101 243 141
154 179 121 141 250
However, the same operation(on same data) in python(numpy) produces different result. I'm unable to understand why?
import numpy as np
a = [[2, 7, 5, 9, 2],[8,3,1,6,10],[4,7,3,10,1],[6,7,10,1,8],[2,8,2,5,9]]
x = np.array(a)
print 'A : ',type(x),'\n',x,'\n\n'
# print np.transpose(A)
X = np.multiply(np.transpose(x),x)
print "A'*A",type(X),'\n',X
produces
A : <type 'numpy.ndarray'>
[[ 2 7 5 9 2]
[ 8 3 1 6 10]
[ 4 7 3 10 1]
[ 6 7 10 1 8]
[ 2 8 2 5 9]]
A'*A <type 'numpy.ndarray'>
[[ 4 56 20 54 4]
[ 56 9 7 42 80]
[ 20 7 9 100 2]
[ 54 42 100 1 40]
[ 4 80 2 40 81]]
Numpy documentation states that the operator you apply performs element-wise multiplication.
However, mtimes in MATLAB does matrix multiplication.
To verify, MATLAB syntax for element-wise multiplication produces the same result you see in numpy:
disp(x.'.*x)
4 56 20 54 4
56 9 7 42 80
20 7 9 100 2
54 42 100 1 40
4 80 2 40 81