Why number of peaks of my signal stay same when I increase n in n-point moving average filter when data is big? - matlab

I am using MATLAB to find the number of peaks of a signal.
I'm trying to plot the number of peaks of a signal filtered with N-point moving average filter, N goes from 2 to 30.(I also consider the number of peaks when no filter has applied at the beginning of the resulting array) My data array(imported from csv and has double values between 0 and 1) has around 50k points. When I give part of the data i.e 100, 500 or 1000 points, using array slicing, # of peaks decrease as expected. However, when I give the whole data or even 2000 points, the number of peaks stays same at 127.
I changed the number of data given to the filter to find out why this happens. I changed the commented lines like showed in the comment and tried. When less than 1000 data points given plot was fine.
Here is the signal
https://www.dropbox.com/s/e1bkcjn5ta5q610/exampleSignal.csv?dl=0
Please import it from 4th element to end, it has some strange data at the beginning, I have not taken them, VarName1 is the imported column vector's name
numberOfPeaks = zeros(30,1,'int8');
pks = findpeaks(VarName1); % VarName1(1:1000,:) (when no filter applied)
numberOfPeaks(1) = size(pks,1);
for i=2:30
h = 1/i*ones(1,i,'double');
y = filter(h,1,VarName1); % VarName1(1:1000,:)
numberOfPeaks(i) = size(findpeaks(y),1);
end
plot(1:30,numberOfPeaks);
I expect a plot like this when whole the data is given:
but I get:

I realised that the problem is int8 I use. It can only take up to 127 and this caused my big results to be as 127.
Turning it into double solves the problem.

Related

Matlab - Error bars for (large) noisy data sets

I have ten large linear arrays (n elements) such as
A = [ A1 A2....An ]
B = [ B1 B2....Bn ]
....
J = [ J1 J2....Jn ]
I can make an arithmentic mean of these arrays by adding them and dividing by ten and this reduces the noise substantially and shows the trend I am looking for. (note, that often I have more or less than ten data sets, but this is representative. Also, n varies, but is generally 10,000s of data points)
What I would like to do is plot this average with error bars that represent the noise in the original ten arrays. The arrays are large, so maybe error bars at sensible increments (say ten error bars across the entire range where the deviation from the average is greatest).
The image shows 10 noisy data sets plotted as grey lines with the mean as a black line.
thanks
I have come to a rather laborious solution to this problem by writing a (what seems) lengthy piece of code.
The code takes all the input arrays and creates two new arrays. One which is the maximum y value for each x and one which is the miniumum. This is done with the max and min functions in matlab.
The minimum is substracted from the maximum to create an array of the magnitudes of the "error" at each value of x.
Then every nth value of the error array is plotted as an error bar on top of the arithmetic mean value of all the original input arrays.
It's a fix to the problem - and the screenshot shows the result - but I was wondering if there is a more elegant "built in" solution that does this in one shot.

How to identify an optimal subsample from a data set with missing values in MATLAB

I would like to identify the largest possible contiguous subsample of a large data set. My data set consists of roughly 15,000 financial time series of up to 360 periods in length. I have imported the data into MATLAB as a 360 by 15,000 numerical matrix.
This matrix contains a lot of NaNs due to some of the financial data not being available for the entire period. In the illustration, NaN entries are shown in dark blue, and non-NaN entries appear in light blue. It is these light blue non-NaN entries which I would like to ideally combine into an optimal subsample.
I would like to find the largest possible contiguous block of data that is contained in my matrix, while ensuring that my matrix contains a sufficient number of periods.
In a first step I would like to sort my matrix from left to right in descending order by the number of non-NaN entries in each column, that is, I would like to sort by the vector obtained by entering sum(~isnan(data),1).
In a second step I would like to find the sub-array of my data matrix that is at least 72 entries along the first dimension and is otherwise as large as possible, measured by the total number of entries.
What is the best way to implement this?
A big warning (may or may not apply depending on context)
As Oleg mentioned, when an observation is missing from a financial time series, it's often missing for reason: eg. the entity went bankrupt, the entity was delisted, or the instrument did not trade (i.e. illiquid). Constructing a sample without NaNs is likely equivalent to constructing a sample where none of these events occur!
For example, if this were hedge fund return data, selecting a sample without NaNs would exclude funds that blew up and ceased trading. Excluding imploded funds would bias estimates of expected returns upwards and estimates of variance or covariance downwards.
Picking a sample period with the fewest time series with NaNs would also exclude periods like the 2008 financial crisis, which may or may not make sense. Excluding 2008 could lead to an underestimate of how haywire things could get (though including it could lead to overestimate the probability of certain rare events).
Some things to do:
Pick a sample period as long as possible but be aware of the limitations.
Do your best to handle survivorship bias: eg. if NaNs represent delisting events, try to get some kind of delisting return.
You almost certainly will have an unbalanced panel with missing observations, and your algorithm will have to be deal with that.
Another general finance / panel data point, selecting a sample at some time point t and then following it into the future is perfectly ok. But selecting a sample based upon what happens during or after the sample period can be incredibly misleading.
Code that does what you asked:
This should do what you asked and be quite fast. Be aware of the problems though if whether an observation is missing is not random and orthogonal to what you care about.
Inputs are a T by n sized matrix X:
T = 360; % number of time periods (i.e. rows) in X
n = 15000; % number of time series (i.e. columns) in X
T_subsample = 72; % desired length of sample (i.e. rows of newX)
% number of possible starting points for series of length T_subsample
nancount_periods = T - T_subsample + 1;
nancount = zeros(n, nancount_periods, 'int32'); % will hold a count of NaNs
X_isnan = int32(isnan(X));
nancount(:,1) = sum(X_isnan(1:T_subsample, :))'; % 'initialize
% We need to obtain a count of nans in T_subsample sized window for each
% possible time period
j = 1;
for i=T_subsample + 1:T
% One pass: add new period in the window and subtract period no longer in the window
nancount(:,j+1) = nancount(:,j) + X_isnan(i,:)' - X_isnan(j,:)';
j = j + 1;
end
indicator = nancount==0; % indicator of whether starting_period, series
% has no NaNs
% number of nonan series of length T_subsample by starting period
max_subsample_size_by_starting_period = sum(indicator);
max_subsample_size = max(max_subsample_size_by_starting_period);
% find the best starting period
starting_period = find(max_subsample_size_by_starting_period==max_subsample_size, 1);
ending_period = starting_period + T_subsample - 1;
columns_mask = indicator(:,starting_period);
columns = find(columns_mask); %holds the column ids we are using
newX = X(starting_period:ending_period, columns_mask);
Here's an idea,
Assuming you can rearrange the series, calculate the distance (you decide the metric, but if looking at is nan vs not is nan, Hamming is ok).
Now hierarchically cluster the series and rearrange them using either a dendrogram
or http://www.mathworks.com/help/bioinfo/examples/working-with-the-clustergram-function.html
You should probably prune any series that doesn't have a minimum number of non nan values before you start.
First I have only little insight in financial mathematics. I understood it that you want to find the longest continuous chain of non-NaN values for each time series. The time series should be sorted depending on the length of this chain and each time series, not containing a chain above a threshold, discarded. This can be done using
data = rand(360,15e3);
data(abs(data) <= 0.02) = NaN;
%% sort and chop data based on amount of consecutive non-NaN values
binary_data = ~isnan(data);
% find edges, denote their type and calculate the biggest chunk in each
% column
edges = [2*binary_data(1,:)-1; diff(binary_data, 1)];
chunk_size = diff(find(edges));
chunk_size(end+1) = numel(edges)-sum(chunk_size);
[row, ~, id] = find(edges);
num_row_elements = diff(find(row == 1));
num_row_elements(end+1) = numel(chunk_size) - sum(num_row_elements);
%a chunk of NaN has a -1 in id, a chunk of non-NaN a 1
chunks_per_row = mat2cell(chunk_size .* id,num_row_elements,1);
% sort by largest consecutive block of non-NaNs
max_size = cellfun(#max, chunks_per_row);
[max_size_sorted, idx] = sort(max_size, 'descend');
data_sorted = data(:,idx);
% remove all elements that only have block sizes smaller then some number
some_number = 20;
data_sort_chop = data_sorted(:,max_size_sorted >= some_number);
Note that this can be done a lot simpler, if the order of periods within a time series doesn't matter, aka data([1 2 3],id) and data([3 1 2], id) are identical.
What I do not know is, if you want to discard all periods within a time series that don't correspond to the biggest value, get all those chains as individual time series, ...
Feel free to drop a comment if it has to be more specific.

MATLAB - histograms of equal size and histogram overlap

An issue I've come across multiple times is wanting to take two similar data sets and create histograms from them where the bins are identical, so as to easily calculate things like histogram overlap.
You can define the number of bins (obviously) using
[counts, bins] = hist(data,number_of_bins)
But there's not an obvious way (as far as I can see) to make the bin size equal for several different data sets. If remember when I initially looked finding various people who seem to have the same issue, but no good solutions.
The right, easy way
As pointed out by horchler, this can easily be achieved using either histc (which lets you define your bins vector), or vectorizing your histogram input into hist.
The wrong, stupid way
I'm leaving below as a reminder to others that even stupid questions can yield worthwhile answers
I've been using the following approach for a while, so figured it might be useful for others (or, someone can very quickly point out the correct way to do this!).
The general approach relies on the fact that MATLAB's hist function defines an equally spaced number of bins between the largest and smallest value in your sample. So, if you append a start (smallest) and end (largest) value to your various samples which is the min and max for all samples of interest, this forces the histogram range to be equal for all your data sets. You can then truncate the first and last values to recreate your original data.
For example, create the following data set
A = randn(1,2000)+7
B = randn(1,2000)+9
[counts_A, bins_A] = hist(A, 500);
[counts_B, bins_B] = hist(B, 500);
Here for my specific data sets I get the following results
bins_A(1) % 3.8127 (this is also min(A) )
bins_A(500) % 10.3081 (this is also max(A) )
bins_B(1) % 5.6310 (this is also min(B) )
bins_B(500) % 13.0254 (this is also max(B) )
To create equal bins you can simply first define a min and max value which is slightly smaller than both ranges;
topval = max([max(A) max(B)])+0.05;
bottomval = min([min(A) min(B)])-0.05;
The addition/subtraction of 0.05 is based on knowledge of the range of values - you don't want your extra bin to be too far or too close to the actual range. That being said, for this example by using the joint min/max values this code will work irrespective of the A and B values generated.
Now we re-create histogram counts and bins using (note the extra 2 bins are for our new largest and smallest value)
[counts_Ae, bins_Ae] = hist([bottomval, A, topval], 502);
[counts_Be, bins_Be] = hist([bottomval, B, topval], 502);
Finally, you truncate the first and last bin and value entries to recreate your original sample exactly
bins_A = bins_Ae(2:501)
bins_B = bins_Ae(2:501)
counts_A = counts_Ae(2:501)
counts_B = counts_Be(2:501)
Now
bins_A(1) % 3.7655
bins_A(500) % 13.0735
bins_B(1) % 3.7655
bins_B(500) % 13.0735
From this you can easily plot both histograms again
bar([bins_A;bins_B]', [counts_A;counts_B]')
And also plot the histogram overlap with ease
bar(bins_A,(counts_A+counts_B)-(abs(counts_A-counts_B)))

Pruning data for better viewing on loglog graph - Matlab

just wondering if anyone has any ideas about an issue I'm having.
I have a fair amount of data that needs to be displayed on one graph. Two theoretical lines that are bold and solid are displayed on top, then 10 experimental data sets that converge to these lines are graphed, each using a different identifier (eg the + or o or a square etc). These graphs are on a log scale that goes up to 1e6. The first few decades of the graph (< 1e3) look fine, but as all the datasets converge (> 1e3) it's really difficult to see what data is what.
There's over 1000 data points points per decade which I can prune linearly to an extent, but if I do this too much the lower end of the graph will suffer in resolution.
What I'd like to do is prune logarithmically, strongest at the high end, working back to 0. My question is: how can I get a logarithmically scaled index vector rather than a linear one?
My initial assumption was that as my data is lenear I could just use a linear index to prune, which lead to something like this (but for all decades):
//%grab indicies per decade
ind12 = find(y >= 1e1 & y <= 1e2);
indlow = find(y < 1e2);
indhigh = find(y > 1e4);
ind23 = find(y >+ 1e2 & y <= 1e3);
ind34 = find(y >+ 1e3 & y <= 1e4);
//%We want ind12 indexes in this decade, find spacing
tot23 = round(length(ind23)/length(ind12));
tot34 = round(length(ind34)/length(ind12));
//%grab ones to keep
ind23keep = ind23(1):tot23:ind23(end);
ind34keep = ind34(1):tot34:ind34(end);
indnew = [indlow' ind23keep ind34keep indhigh'];
loglog(x(indnew), y(indnew));
But this causes the prune to behave in a jumpy fashion obviously. Each decade has the number of points that I'd like, but as it's a linear distribution, the points tend to be clumped at the high end of the decade on the log scale.
Any ideas on how I can do this?
I think the easiest way to do this would be to use the LOGSPACE function to generate a set of indices into your data. For example, to create a set of 100 points logarithmically spaced from 1 to N (the number of points in your data), you can try the following:
indnew = round(logspace(0,log10(N),100)); %# Create the log-spaced index
indnew = unique(indnew); %# Remove duplicate indices
loglog(x(indnew),y(indnew)); %# Plot the indexed data
Creating a logarithmically-spaced index like this will result in fewer values being chosen from the end of the vector relative to the start, thus pruning values more severely towards the end of the vector and improving the appearance of the log plot. It would therefore be most effective with vectors that are sorted in ascending order.
The way I understand the problem is that your x-values are linearly spaced, so that if you plot them logarithmically, there are way more data points in 'higher' decades, so that markers lie extremely close to one another. For example, if x goes from 1 to 1000, there are 10 points in the first decade 90 in the second, and 900 in the third. You want to have, say, 3 points per decade instead.
I see two ways to solve the problem. The easier one is to use differently colored lines instead of different markers. Thus, you don't sacrifice any data points, and you can still distinguish everything.
The second solution is to create an unevenly spaced index. Here's how you can do that.
%# create some data
x = 1:1000;
y = 2.^x;
%# plot the graph and see the dots 'coalesce' very quickly
figure,loglog(x,y,'.')
%# for the example, I use a step size of 0.7, which is `log(1)`
xx = 0.7:0.7:log(x(end)); %# this is where I want the data to be plotted
%# find the indices where we want to plot by finding the closest `log(x)'-values
%# run unique to avoid multiples of the same index
indnew = unique(interp1(log(x),1:length(x),xx,'nearest'));
%# plot with fewer points
figure,loglog(x(indnew),y(indnew),'.')

How should I perform this binning and averaging in MATLAB?

I am trying to perform a binning average. I am using the code:
Avg = mean(reshape(a,300,144,27));
AvgF = squeeze(Avg);
The last line gets rid of singleton dimensions.
So as can be seen I am averaging over 300 points. It works fine except for times when I have a total number of points not equal to a multiple of 144*300.
Is there any way to make this binning average work even when the total number of points is not a multiple of 144*300?
EDIT: Sorry if my question sounded confusing. To clarify...
I have a file with 43200 rows and 27 columns. I am averaging by binning 300 rows at a time, which means in the end I am left with a matrix of size 144-by-27.
My code as I wrote it above works only when I have exactly 43200 rows. In some cases I have 43199, 43194, etc.. The reshape function works when I have a total number of rows that is a multiple of 300 (the bin size). Is there a way to make this binning average work when my total number of rows is not a multiple of 300?
I think I understand the problem better now...
If a is the data read from your file (of size N-by-27, where N is ideally 43,200), then I think you would want to do the following:
nRemove = rem(size(a,1),300); %# Find the number of points to remove
a = a(1:end-nRemove,:); %# Trim points to make an even multiple of 300
Avg = mean(reshape(a,300,[],27));
AvgF = squeeze(Avg);
This will remove points such that the number of rows in a will be a multiple of 300. Then your reshape and average should work. Note that I use [] in the call to RESHAPE, which lets it figure out what the number of column should be.