Postgres: Optimising concurrent same row updates - postgresql

THE PROBLEM
I'm working with PostgreSQL v10 + golang and have what I believe to be a very common SQL problem:
I've a table 'counters', that has a current_value and a max_value integer columns.
Strictly, once current_value >= max_value, I would like to drop the request.
I've several Kubernetes pods that for each API call might increment current_value of the same row (in the worst case) in 'counters' table by 1 (can be thought of as concurrent updates to the same DB from distributed hosts).
In my current and naive implementation, multiple UPDATES to the same row naturally block each other (the isolation level is 'read committed' if that matters).
In the worst case, I have about 10+ requests per second that would update the same row. That creates a bottle neck and hurts performance, which I cannot afford.
POSSIBLE SOLUTION
I thought of several ideas to resolve this, but they all sacrify integrity or performance. The only one that keeps both doesn't sound very clean, for this seemingly common problem:
As long as the counter current_value is within relatively safe distance from max_value (delta > 100), send the update request to a channel that would be flushed every second or so by a worker that would aggregate the updates and request them at once. Otherwise (delta <= 100), do the update in the context of the transaction (and hit the bottleneck, but for a minority of cases). This will pace the update requests up until the point that the limit is almost reached, effectively resolving the bottleneck.
This would probably work for resolving my problem. However, I can't help but think that there are better ways to address this.
I didn't find a great solution online and even though my heuristic method would work, it feels unclean and it lacks integrity.
Creative solutions are very welcome!
Edit:
Thanks to #laurenz-albe advice, I tried to shorten the duration between the UPDATE where the row gets locked to the COMMIT of the transaction. Pushing all UPDATES to the end of the transaction seems to have done the trick. Now I can process over 100 requests/second and maintain integrity!

10 concurrent updates per second is ridiculously little. Just make sure that the transactions are as short as possible, and it won't be a problem.
Your biggest problem will be VACUUM, as lots of updates are the worst possible workload for PostgreSQL. Make sure you create the table with a fillfactor of 70 or so and the current_value is not indexed, so that you get HOT updates.

Related

Postgres Upsert - fragmentation issues

Summary
I am using Postgres UPSERTs in our ETLs and I'm experiencing issues with fragmentation and bloat on the tables I am writing to, which is slowing down all operations including reads.
Context
I have hourly batch ETLs upserting into tables (tables ~ 10s of Millions, upserts ~ 10s of thousands) and we have auto vacuums set to thresholds on AWS.
I have had to run FULL vacuums to get the space back and prevent processes from hanging. This has been exacerbated now as the frequency of one of our ETLs has increased, which populates some core tables which are the source for a number of denormalised views.
It seems like what is happening is that tables don't have a chance to be vacuumed before the next ETL run, thus creating a spiral which eventually leads to a complete slow-down.
Question!
Does Upsert fundamentally have a negative impact on fragmentation and if so, what are other people using? I am keen to implement some materialised views and move most of our indexes to the new views while retaining only the PK index on the tables we are writing to, but I'm not confident that this will resolve the issue I'm seeing with bloat.
I've done a bit of reading on the issue but nothing conclusive, for example --> https://www.targeted.org/articles/databases/fragmentation.html
Thanks for your help
It depends. If there are no constraint violations, INSERT ... ON CONFLICT won't cause any bloat. If it performs an update, it will produce a dead row.
The measures you can take:
set autovacuum_vacuum_cost_delay = 0 for faster autovacuum
use a fillfactor somewhat less than 100 and have no index on the updated columns, so that you can get HOT updates, which make autovacuum unnecessary
It is not clear what you are actually seeing. Can you turn track_io_timing on, and then do an EXPLAIN (ANALYZE, BUFFERS) for the query that you think has been slowed down by bloat?
Bloat and fragmentation aren't the same thing. Fragmentation is more an issue with indexes under some conditions, not the tables themselves.
It seems like what is happening is that tables don't have a chance to be vacuumed before the next ETL run
This one could be very easy to fix. Run a "manual" VACUUM (not VACUUM FULL) at end or at the beginning of each ETL run. Since you have a well defined workflow, there is no need to try get autovacuum to do the right thing, as it should be very easy to inject manual vacuums into your workflow. Or do you think that one VACUUM per ETL is overkill?

Postgres running slow after indexing finished

My postgres was running really slow lately, an aggregation for a month it usually ended up taking more than 1 minute (to be more exact the last one took 7 mins and 23 secs).
Last friday i recreated the servers (master and replica) and reimported the database.
First thing I noticed is that from 133gb now the database is 42gb (the actual data is around 12gb, i guess the rest are the indexes).
Everything was fast as hell for a day, after that the indexing finished (26gb on indexes) and now I'm back to square 1.
A count on ~5 million rows takes 3 mins 42 secs.
Made the autovacuum more aggressive and it looks like it's doing it's job now but the DB is still slow.
I am using the db for an API so it's constantly growing. Atm i have 2 tables one that has around 5 mil rows and the other 28 mil.
So if the master has a lot of activity and let's say that i'm expecting some performance loss, i don't expect it from the replica.
What's curios is that after a restart it's really fast for an hour or so.
Also another thing that i noticed was that on every query I do the IO is 100% while the memory and cpu are almost not used at all.
Any help would be greatly appreciated.
Update
Same database on a smaller machine works like a charm.
Same queries, same indexes.
The only difference is the traffic, not writing or updating that much.
Also i forgot to mention one thing, one of my indexes is clustered.
The live machine is a 5 core with 64gb and 3k IO.
The test machine is a 2 core with 4gb and an SSD.
Update
Found my issue.
Apparently the autovacuum can't get a lock and by the time it gets it the dead tuples increased.
Made the autovacuum more aggresive for now and deleted a bunch of unused indexes.
Still don't know how to fix the lock issue tho.
Update
Looks like something is increasing the estimated row count.
Since my last update here the row count increased by 2 mil.
I guess that by tomorrow the row count will be again around 12 mil and the count will be slow as hell again.
Could this be related to autovacuum?
Update
Well found my issue.
Looks like postgres is losing a lot of speed on a write intensive database.
Had a column that was used as a flag and updated a lot of times per day.
Everything looks really good after the flag and update was removed.
Any clue on how to fix this issue on a write intensive table?
May be the following pointers help:
Are you really sure you want to do a 5mil row Aggregation for an API? Everytime ? Can't you split the data into chunks such that only a small number of chunks actually get most of the new rows (and so the aggregation of all the previous chunks can be reused for the next Query)? Time is one such measure, serial numbers could be another, etc. If so, partitioning the data is an obvious solution you should investigate, it really has a good chance of giving you sub-second query times (assuming you store aggregations for previous chunks smartly).
A hunch about that first hour magic is that although this data fits RAM, concurrent querying pushes that data-set out and then its purely disk I/O... and in that case, CPU / RAM being idle isn't a surprise.
Finally, I think this setup is asking for a re-design where there is only so much you could do with a single SQL, and in that expecting sub-second Query times for data that is not within RAM for a 5mil data-set is probably being too optimistic!
(Nonetheless, do post your findings, if possible)

Database for long running transactions with huge updates

I build a tool for data extraction and transformation. Typical use case - transactionally processing lots of data.
Numbers are - about 10sec - 5min duration, 200-10000 row updated (long duration caused not by the database itself but by outside services that used during transaction).
There are two types of agents that access database - multiple read agents, and only one write agent (so, there are never multiple concurrent write).
During the transaction:
Read agents should be able to read database and see it in the current state.
Write agent should be able to read database (it does both - read and write during transaction) and see it in the new (not yet committed) state.
Is PostgreSQL a good choice for that type of load? I know it uses MVCC - so it should be ok in general, but is it ok to use long and big transactions extensively?
What other open-source transactional databases may be a good choice (I am not limited to SQL)?
P.S.
I do not know if the sharding may affect the performance. The database will be sharded. For every shard there will be multiple readers and only one writer, but multiple different shards can be written to at the same time.
I know that it's better not to use outside services during transaction, but in that case - it's the goal. The database used as a reliable and consistent index for some heavy, huge, slow and eventually-consistent data processing tool.
Huge disclaimer: as always, only real life test can tell you the truth.
But, I think PostgreSQL will not let you down, if you use most recent version (at least 9.1, better 9.2) and tune it properly.
I have somewhat similar load in my server, but with slightly worse R/W ratio: about 10:1. Transactions range from few milliseconds up to 1 hour (and sometimes even more), and one transaction can insert or update up to 100k rows. Total number of concurrent writers with long transactions can reach 10 and more.
So far so good - I don't really have any serious issues, performance is great (certainly not worse than I expected).
What really helps is that my hot working data set almost fits into available memory.
So, give it a try, it should work great for your load.
Have a look at this link. Maximum transaction size in PostgreSQL
Basically there can be some technical limits on the software side to how large your transaction can be.

Postgresql Truncation speed

We're using Postgresql 9.1.4 as our db server. I've been trying to speed up my test suite so I've stared profiling the db a bit to see exactly what's going on. We are using database_cleaner to truncate tables at the end of tests. YES I know transactions are faster, I can't use them in certain circumstances so I'm not concerned with that.
What I AM concerned with, is why TRUNCATION takes so long (longer than using DELETE) and why it takes EVEN LONGER on my CI server.
Right now, locally (on a Macbook Air) a full test suite takes 28 minutes. Tailing the logs, each time we truncate tables... ie:
TRUNCATE TABLE table1, table2 -- ... etc
it takes over 1 second to perform the truncation. Tailing the logs on our CI server (Ubuntu 10.04 LTS), take takes a full 8 seconds to truncate the tables and a build takes 84 minutes.
When I switched over to the :deletion strategy, my local build took 20 minutes and the CI server went down to 44 minutes. This is a significant difference and I'm really blown away as to why this might be. I've tuned the DB on the CI server, it has 16gb system ram, 4gb shared_buffers... and an SSD. All the good stuff. How is it possible:
a. that it's SO much slower than my Macbook Air with 2gb of ram
b. that TRUNCATION is so much slower than DELETE when the postgresql docs state explicitly that it should be much faster.
Any thoughts?
This has come up a few times recently, both on SO and on the PostgreSQL mailing lists.
The TL;DR for your last two points:
(a) The bigger shared_buffers may be why TRUNCATE is slower on the CI server. Different fsync configuration or the use of rotational media instead of SSDs could also be at fault.
(b) TRUNCATE has a fixed cost, but not necessarily slower than DELETE, plus it does more work. See the detailed explanation that follows.
UPDATE: A significant discussion on pgsql-performance arose from this post. See this thread.
UPDATE 2: Improvements have been added to 9.2beta3 that should help with this, see this post.
Detailed explanation of TRUNCATE vs DELETE FROM:
While not an expert on the topic, my understanding is that TRUNCATE has a nearly fixed cost per table, while DELETE is at least O(n) for n rows; worse if there are any foreign keys referencing the table being deleted.
I always assumed that the fixed cost of a TRUNCATE was lower than the cost of a DELETE on a near-empty table, but this isn't true at all.
TRUNCATE table; does more than DELETE FROM table;
The state of the database after a TRUNCATE table is much the same as if you'd instead run:
DELETE FROM table;
VACCUUM (FULL, ANALYZE) table; (9.0+ only, see footnote)
... though of course TRUNCATE doesn't actually achieve its effects with a DELETE and a VACUUM.
The point is that DELETE and TRUNCATE do different things, so you're not just comparing two commands with identical outcomes.
A DELETE FROM table; allows dead rows and bloat to remain, allows the indexes to carry dead entries, doesn't update the table statistics used by the query planner, etc.
A TRUNCATE gives you a completely new table and indexes as if they were just CREATEed. It's like you deleted all the records, reindexed the table and did a VACUUM FULL.
If you don't care if there's crud left in the table because you're about to go and fill it up again, you may be better off using DELETE FROM table;.
Because you aren't running VACUUM you will find that dead rows and index entries accumulate as bloat that must be scanned then ignored; this slows all your queries down. If your tests don't actually create and delete all that much data you may not notice or care, and you can always do a VACUUM or two part-way through your test run if you do. Better, let aggressive autovacuum settings ensure that autovacuum does it for you in the background.
You can still TRUNCATE all your tables after the whole test suite runs to make sure no effects build up across many runs. On 9.0 and newer, VACUUM (FULL, ANALYZE); globally on the table is at least as good if not better, and it's a whole lot easier.
IIRC Pg has a few optimisations that mean it might notice when your transaction is the only one that can see the table and immediately mark the blocks as free anyway. In testing, when I've wanted to create bloat I've had to have more than one concurrent connection to do it. I wouldn't rely on this, though.
DELETE FROM table; is very cheap for small tables with no f/k refs
To DELETE all records from a table with no foreign key references to it, all Pg has to do a sequential table scan and set the xmax of the tuples encountered. This is a very cheap operation - basically a linear read and a semi-linear write. AFAIK it doesn't have to touch the indexes; they continue to point to the dead tuples until they're cleaned up by a later VACUUM that also marks blocks in the table containing only dead tuples as free.
DELETE only gets expensive if there are lots of records, if there are lots of foreign key references that must be checked, or if you count the subsequent VACUUM (FULL, ANALYZE) table; needed to match TRUNCATE's effects within the cost of your DELETE .
In my tests here, a DELETE FROM table; was typically 4x faster than TRUNCATE at 0.5ms vs 2ms. That's a test DB on an SSD, running with fsync=off because I don't care if I lose all this data. Of course, DELETE FROM table; isn't doing all the same work, and if I follow up with a VACUUM (FULL, ANALYZE) table; it's a much more expensive 21ms, so the DELETE is only a win if I don't actually need the table pristine.
TRUNCATE table; does a lot more fixed-cost work and housekeeping than DELETE
By contrast, a TRUNCATE has to do a lot of work. It must allocate new files for the table, its TOAST table if any, and every index the table has. Headers must be written into those files and the system catalogs may need updating too (not sure on that point, haven't checked). It then has to replace the old files with the new ones or remove the old ones, and has to ensure the file system has caught up with the changes with a synchronization operation - fsync() or similar - that usually flushes all buffers to the disk. I'm not sure whether the the sync is skipped if you're running with the (data-eating) option fsync=off .
I learned recently that TRUNCATE must also flush all PostgreSQL's buffers related to the old table. This can take a non-trivial amount of time with huge shared_buffers. I suspect this is why it's slower on your CI server.
The balance
Anyway, you can see that a TRUNCATE of a table that has an associated TOAST table (most do) and several indexes could take a few moments. Not long, but longer than a DELETE from a near-empty table.
Consequently, you might be better off doing a DELETE FROM table;.
--
Note: on DBs before 9.0, CLUSTER table_id_seq ON table; ANALYZE table; or VACUUM FULL ANALYZE table; REINDEX table; would be a closer equivalent to TRUNCATE. The VACUUM FULL impl changed to a much better one in 9.0.
Brad, just to let you know. I've looked fairly deeply into a very similar question.
Related question: 30 tables with few rows - TRUNCATE the fastest way to empty them and reset attached sequences?
Please also look at this issue and this pull request:
https://github.com/bmabey/database_cleaner/issues/126
https://github.com/bmabey/database_cleaner/pull/127
Also this thread: http://archives.postgresql.org/pgsql-performance/2012-07/msg00047.php
I am sorry for writing this as an answer, but I didn't find any comment links, maybe because there are too much comments already there.
I've encountered similar issue lately, i.e.:
The time to run test suite which used DatabaseCleaner varied widely between different systems with comparable hardware,
Changing DatabaseCleaner strategy to :deletion provided ~10x improvement.
The root cause of the slowness was a filesystem with journaling (ext4) used for database storage. During TRUNCATE operation the journaling daemon (jbd2) was using ~90% of disk IO capacity. I am not sure if this is a bug, an edge case or actually normal behaviour in these circumstances. This explains however why TRUNCATE was a lot slower than DELETE - it generated a lot more disk writes. As I did not want to actually use DELETE I resorted to setting fsync=off and it was enough to mitigate this issue (data safety was not important in this case).
A couple of alternate approaches to consider:
Create a empty database with static "fixture" data in it, and run the tests in that. When you are done, just just drop the database, which should be fast.
Create a new table called "test_ids_to_delete" that contains columns for table names and primary key ids. Update your deletion logic to insert the ids/table names in this table instead, which will be much faster than running deletes. Then, write a script to run "offline" to actually delete the data, either after a entire test run has finished, or overnight.
The former is a "clean room" approach, while latter means there will be some test data will persist in database for longer. The "dirty" approach with offline deletes is what I'm using for a test suite with about 20,000 tests. Yes, there are sometimes problems due to having "extra" test data in the dev database but at times. But sometimes this "dirtiness" has helped us find and fixed bug because the "messiness" better simulated a real-world situation, in a way that clean-room approach never will.

Queue implementation

What is the best way to implement fast queue where multiple users try to access to about 100 000 records. Only one user can get one unique row. Now im using sql database (firebird) but there is a lot of problems deadlocks / high database load.
Most of the time, deadlocks are caused by bad transaction logic.
In general, the transactions have to be short (the shorter the better).
You can start by reading some doc:
http://www.firebirdsql.org/doc/whitepapers/fb_vs_ibm_vs_oracle.htm
http://www.ibphoenix.com/main.nfs?a=ibphoenix&page=ibp_expert4