How to check convolution theorem in MATLAB? My result is wrong - matlab

I am trying to check convolution theorem in MATLAB. I have a signal called sine_big_T. Then I have a filter called W. W and sine_big_T have the same length.
The convolution theorem says that fft(sine_big_T.*W) should be same as the convolution of fft(sine_big_T) with fft(W).
I am quite confused about this theorem. fft(sine_big_T.*W) will give me a array with length length(sine_big_T). However, conv(fft(sine_big_T), fft(W)) gives me a array with length length(sine_big_T) + length(W) - 2. I have tried the commend conv(fft(sine_big_T), fft(W), 'same'), but the result is still much different from fft(sine_big_T.*W).
T = 128;
big_T = 8*T;
small_T = T/8;
sine_big_T = zeros(1,129);
sine_small_T = zeros(1,129);
W = zeros(1,129);
for i = 0:T
sine_big_T(1, i+1) = sin(2*pi/big_T*i);
W(1, i + 1) = 1 - cos(2*pi/T * i);
end
figure
plot(1:129,fft(sine_big_T.*W));
I_fft = fft(sine_big_T);
W_fft = fft(W);
test = conv(I_fft, W_fft,'same');
figure
plot(1:length(I_fft), test)
From the theorem, the two plots should look same. But the result is not even close. I think the way I use conv is not correct. What is the right way to verify the theorem?

Using conv with 'same' is correct. You are seeing two things:
fft defines the origin in the first array element, not the middle of the domain. This does not play well with conv. Use this instead:
test = ifftshift( conv( fftshift(I_fft), fftshift(W_fft), 'same' ) );
The fftshift function shifts the origin to the middle of the array, where it is good for conv with 'same', and ifftshift shifts the origin back to the first element.
Normalization. The FFT is typically normalized so that multiplication in the frequency domain is convolution in the spatial domain. Since you are computing convolution in the frequency domain, the normalization is off. To correct the normalization, plot
plot(1:129,fft(sine_big_T.*W)*length(W));

Related

Combine convolve filter in matlab

Is there a way to take the low pass and high pass filters in the following code and combine them into a single kernel and apply one conv2() function?
note: length(lfilter) = 21, length(hfilter) = 81.
what we are basically doing in the last step is saying to remove the large objects from the image (after already removing the very small objects with a Gaussian blur).
properties (Constant)
minStar = 2; % min star radius
maxStar = 8; % max star radius
threshold = 12;
end
function filter2(this)
normalize = #(x) x/sum(x);
lfilter = normalize(exp(-((-ceil(5*this.minStar):ceil(5*this.minStar))/(2*this.minStar)).^2));
hfilter = normalize(exp(-((-ceil(5*this.maxStar):ceil(5*this.maxStar))/(2*this.maxStar)).^2));
this.low = conv2(lfilter',lfilter,this.raw,'same');
this.high = conv2(hfilter',hfilter,this.raw,'same');
this.filtered = this.low - this.high;
this.foreground = this.filtered > this.threshold;
end
Since the convolution operator is associative:
conv( a, conv(b,c) ) == conv( conv(a,b), c )
you should be able to combine the two kernels into one just by convolving them with each other.
In your case something like this should work:
new_kernel = conv2(lfilter',lfilter, conv2(hfilter',hfilter), 'same');
Convolution is commutative as well so the order in which you perform the convolutions shouldn't matter.
EDIT: as I explain in the comment below, the asker's method of performing four 1D convolutions ends up being faster than a single 2D convolution.
I just got the answer in the matlab forums. http://www.mathworks.com/matlabcentral/answers/169713-combine-convolution-filters-bandpass-into-a-single-kernel
The gist is that you have to use padding to fill in both sides of the shorter filter, and then you can just combine the vectors.
Convolution is a linear operation so yes, you can combine the two filtering operations into one. Just make the filters the same size and add/subtract them. For example:
lfilter = normalize(exp(-((-ceil(5*minStar):ceil(5*minmax))/(2*this.minStar)).^2));
hfilter = normalize(exp(-((-ceil(5*maxStar):ceil(5*minmax))/(2*this.maxStar)).^2));
padlength = (length(hfilter) - length(lfilter))/2;
lfilter = padarray(lfilter, [0 padlength]);
lhfilter = lfilter - hfilter;
this.filtered = conv2(lhfilter',lhfilter,this.raw,'same');

FFT of a real symmetric vector is not real and symmetric

I am having a hard time understanding what should be a simple concept. I have constructed a vector in MATLAB that is real and symmetric. When I take the FFT in MATLAB, the result has a significant imaginary component, even though the symmetry rules of the Fourier transform say that the FT of a real symmetric function should also be real and symmetric. My example code:
N = 1 + 2^8;
k = linspace(-1,1,N);
V = exp(-abs(k));
Vf1 = fft(fftshift(V));
Vf2 = fft(ifftshift(V));
Vf3 = ifft(fftshift(V));
Vf4 = ifft(ifftshift(V));
Vf5 = fft(V);
Vf6 = ifft(V);
disp([isreal(Vf1) isreal(Vf2) isreal(Vf3) isreal(Vf4) isreal(Vf5) isreal(Vf6)])
Result:
0 0 0 0 0 0
No combinations of (i)fft or (i)fftshift result in a real symmetric vector. I've tried with both even and odd N (N = 2^8 vs. N = 1+2^8).
I did try looking at k+flip(k) and there are some residuals on the order of eps(1), but the residuals are also symmetric and the imaginary part of the FFT is not coming out as fuzz on the order of eps(1), but rather with magnitude comparable to the real part.
What blindingly obvious thing am I missing?
Blindingly obvious thing I was missing:
The FFT is not an integral over all space, so it assumes a periodic signal. Above, I am duplicating the last point in the period when I choose an even N, and so there is no way to shift it around to put the zero frequency at the beginning without fractional indexing, which does not exist.
A word about my choice of k. It is not arbitrary. The actual problem I am trying to solve is to generate a model FTIR interferogram which I will then FFT to get a spectrum. k is the distance that the interferometer travels which gets transformed to frequency in wavenumbers. In the real problem there will be various scaling factors so that the generating function V will yield physically meaningful numbers.
It's
Vf = fftshift(fft(ifftshift(V)));
That is, you need ifftshift in time-domain so that samples are interpreted as those of a symmetric function, and then fftshift in frequency-domain to again make symmetry apparent.
This only works for N odd. For N even, the concept of a symmetric function does not make sense: there is no way to shift the signal so that it is symmetric with respect to the origin (the origin would need to be "between two samples", which is impossible).
For your example V, the above code gives Vf real and symmetric. The following figure has been generated with semilogy(Vf), so that small as well as large values can be seen. (Of course, you could modify the horizontal axis so that the graph is centered at 0 frequency as it should; but anyway the graph is seen to be symmetric.)
#Yvon is absolutely right with his comment about symmetry. Your input signal looks symmetrical, but it isn't because symmetry is related to origin 0.
Using linspace in Matlab for constructing signals is mostly a bad choice.
Trying to repair the results with fftshift is a bad idea too.
Use instead:
k = 2*(0:N-1)/N - 1;
and you will get the result you expect.
However the imaginary part of the transformed values will not be perfectly zero.
There is some numerical noise.
>> max(abs(imag(Vf5)))
ans =
2.5535e-15
Answer to Yvon's question:
Why? >> N = 1+2^4 N = 17 >> x=linspace(-1,1,N) x = -1.0000 -0.8750 -0.7500 -0.6250 -0.5000 -0.3750 -0.2500 -0.1250 0 0.1250 0.2500 0.3750 0.5000 0.6250 0.7500 0.8750 1.0000 >> y=2*(0:N-1)/N-1 y = -1.0000 -0.8824 -0.7647 -0.6471 -0.5294 -0.4118 -0.2941 -0.1765 -0.0588 0.0588 0.1765 0.2941 0.4118 0.5294 0.6471 0.7647 0.8824 – Yvon 1
Your example is not a symmetric (even) function, but an antisymmetric (odd) function. However, this makes no difference.
For a antisymmetric function of length N the following statement is true:
f[i] == -f[-i] == -f[N-i]
The index i runs from 0 to N-1.
Let us see was happens with i=2. Remember, count starts with 0 and ends with 16.
x[2] = -0.75
-x[N-2] == -x[17-2] == -x[15] = (-1) 0.875 = -0.875
x[2] != -x[N-2]
y[2] = -0.7647
-y[N-2] == -y[15] = (-1) 0.7647
y[2] == y[N-2]
The problem is, that the origin of Matlab vectors start at 1.
Modulo (periodic) vectors start with origin 0.
This difference leads to many misunderstandings.
Another way of explanation why linspace(-1,+1,N) is not correct:
Imagine you have a vector which holds a single period of a periodic function,
for instance a Cosinus function. This single period is one of a infinite number of periods.
The first value of your Cosinus vector must not be same as the last value of your vector.
However,that is exactly what linspace(-1,+1,N) does.
Doing so, results in a sequence where the last value of period 1 is the same value as the first sample of the following period 2. That is not what you want.
To avoid this mistake use t = 2*(0:N-1)/N - 1. The distance t[i+1]-t[i] is 2/N and the last value has to be t[N-1] = 1 - 2/N and not 1.
Answer to Yvon's second comment
Whatever you put in an input vector of a DFT/FFT, by theory it is interpreted as a periodic function.
But that is not the point.
DFT performs an integration.
fft(m) = Sum_(k=0)^(N-1) (x(k) exp(-i 2 pi m k/N )
The first value x(k=0) describes the amplitude of the first integration interval of length 1/N. The second value x(k=1) describes the amplitude of the second integration interval of length 1/N. And so on.
The very last integration interval of the symmetric function ends with same value as the first sample. This means, the starting point of the last integration interval is k=N-1 = 1-1/N. Your input vector holds the starting points of the integration intervals.
Therefore, the last point of symmetry k=N is a point of the function, but it is not a starting point of an integration interval and so it is not a member of the input vector.
You have a problem when implementing the concept "symmetry". A purely real, even (or "symmetric") function has a Fourier transform function that is also real and even. "Even" is the symmetry with respect to the y-axis, or the t=0 line.
When implementing a signal in Matlab, however, you always start from t=0. That is, there is no way to "define" the signal starting from before the origin of time.
Searching the Internet for a while lead me to this -
Correct use of fftshift and ifftshift at input to fft and ifft.
As Luis has pointed out, you need to perform ifftshift before feeding the signal into fft. The reason has never been documented in Matlab, but only in that thread. For historical reasons, outputs AND inputs of fft and ifft are swapped. That is, instead of ordered from -N/2 to N/2-1 (the natural order), the signal in time or frequency domain is ordered from 0 to N/2-1 and then -N/2 to -1. That means, the correct way to code is fft( ifftshift(V) ), but most people ignore this at most times. Why it's got silently ignored rather than raising huge problems is that most concerns have been put on the amplitude of signal, not phase. Since circular shifting does not affect amplitude spectrum, this is not a problem (even for the Matlab guys who have written the documentations).
To check the amplitude equality -
Vf2 = fft(ifftshift(V));
Vf5 = fft(V);
Va2 = abs(fftshift(Vf2));
Va5 = abs(fftshift(Vf5));
>> min(abs(Va2-Va5)<1e-10)
ans =
1
To see how badly wrong in phase -
Vp2 = angle(fftshift(Vf2));
Vp5 = angle(fftshift(Vf5));
Anyway, as I wrote in the comment, after copy&pasting your code into a fresh and clean Matlab, it gives 0 1 0 1 0 0.
To your question about N=even and N=odd, my opinion is when N=even, the signal is not symmetric, since there are unequal number of points on either side of the time origin.
Just add the following line after "k = linspace(-1,1,N);"
k(end)=[];
it will remove the last element of the array. This is defined to be symmetric array.
also consider that isreal(complex(1,0)) is false!!!
The isreal function just checks for the memory storage format. so 1+0i is not real in the above example.
You have define your function in order to check for real numbers (like this)
myisreal=#(x) all((abs(imag(x))<1e-6*abs(real(x)))|(abs(x)<1e-8));
Finally your source code should become something like this:
N = 1 + 2^8;
k = linspace(-1,1,N);
k(end)=[];
V = exp(-abs(k));
Vf1 = fft(fftshift(V));
Vf2 = fft(ifftshift(V));
Vf3 = ifft(fftshift(V));
Vf4 = ifft(ifftshift(V));
Vf5 = fft(V);
Vf6 = ifft(V);
myisreal=#(x) all((abs(imag(x))<1e-6*abs(real(x)))|(abs(x)<1e-8));
disp([myisreal(Vf1) myisreal(Vf2) myisreal(Vf3) myisreal(Vf4) myisreal(Vf5) myisreal(Vf6)]);

MATLAB code for calculating MFCC

I have a question if that's ok. I was recently looking for algorithm to calculate MFCCs. I found a good tutorial rather than code so I tried to code it by myself. I still feel like I am missing one thing. In the code below I took FFT of a signal, calculated normalized power, filter a signal using triangular shapes and eventually sum energies corresponding to each bank to obtain MFCCs.
function output = mfcc(x,M,fbegin,fs)
MF = #(f) 2595.*log10(1 + f./700);
invMF = #(m) 700.*(10.^(m/2595)-1);
M = M+2; % number of triangular filers
mm = linspace(MF(fbegin),MF(fs/2),M); % equal space in mel-frequency
ff = invMF(mm); % convert mel-frequencies into frequency
X = fft(x);
N = length(X); % length of a short time window
N2 = max([floor(N+1)/2 floor(N/2)+1]); %
P = abs(X(1:N2,:)).^2./N; % NoFr no. of periodograms
mfccShapes = triangularFilterShape(ff,N,fs); %
output = log(mfccShapes'*P);
end
function [out,k] = triangularFilterShape(f,N,fs)
N2 = max([floor(N+1)/2 floor(N/2)+1]);
M = length(f);
k = linspace(0,fs/2,N2);
out = zeros(N2,M-2);
for m=2:M-1
I = k >= f(m-1) & k <= f(m);
J = k >= f(m) & k <= f(m+1);
out(I,m-1) = (k(I) - f(m-1))./(f(m) - f(m-1));
out(J,m-1) = (f(m+1) - k(J))./(f(m+1) - f(m));
end
end
Could someone please confirm that this is all right or direct me if I made mistake> I tested it on a simple pure tone and it gives me, in my opinion, reasonable answers.
Any help greatly appreciated :)
PS. I am working on how to apply vectorized Cosinus Transform. It looks like I would need a matrix of MxM of transform coefficients but I did not find any source that would explain how to do it.
You can test it yourself by comparing your results against other implementations like this one here
you will find a fully configurable matlab toolbox incl. MFCCs and even a function to reverse MFCC back to a time signal, which is quite handy for testing purposes:
melfcc.m - main function for calculating PLP and MFCCs from sound waveforms, supports many options.
invmelfcc.m - main function for inverting back from cepstral coefficients to spectrograms and (noise-excited) waveforms, options exactly match melfcc (to invert that processing).
the page itself has a lot of information on the usage of the package.

Scale Factor in Matlabs `conv()`

I have the following code which is used to deconvolve a signal. It works very well, within my error limit...as long as I divide my final result by a very large factor (11000).
width = 83.66;
x = linspace(-400,400,1000);
a2 = 1.205e+004 ;
al = 1.778e+005 ;
b1 = 94.88 ;
c1 = 224.3 ;
d = 4.077 ;
measured = al*exp(-((abs((x-b1)./c1).^d)))+a2;
rect = #(x) 0.5*(sign(x+0.5) - sign(x-0.5));
rt = rect(x/83.66);
signal = conv(rt,measured,'same');
check = (1/11000)*conv(signal,rt,'same');
Here is what I have. measured represents the signal I was given. Signal is what I am trying to find. And check is to verify that if I convolve my slit with the signal I found, I get the same result. If you use what I have exactly, you will see that the check and measured are off by that factor of 11000~ish that I threw up there.
Does anyone have any suggestions. My thoughts are that the slit height is not exactly 1 or that convolve will not actually effectively deconvolve, as I request it to. (The use of deconv only gives me 1 point, so I used convolve instead).
I think you misunderstand what conv (and probably also therefore deconv) is doing.
A discrete convolution is simply a sum. In fact, you can expand it as a sum, using a couple of explicit loops, sums of products of the measured and rt vectors.
Note that sum(rt) is not 1. Were rt scaled to sum to 1, then conv would preserve the scaling of your original vector. So, note how the scalings pass through here.
sum(rt)
ans =
104
sum(measured)
ans =
1.0231e+08
signal = conv(rt,measured);
sum(signal)
ans =
1.0640e+10
sum(signal)/sum(rt)
ans =
1.0231e+08
See that this next version does preserve the scaling of your vector:
signal = conv(rt/sum(rt),measured);
sum(signal)
ans =
1.0231e+08
Now, as it turns out, you are using the same option for conv. This introduces an edge effect, since it truncates some of the signal so it ends up losing just a bit.
signal = conv(rt/sum(rt),measured,'same');
sum(signal)
ans =
1.0187e+08
The idea is that conv will preserve the scaling of your signal as long as the kernel is scaled to sum to 1, AND there are no losses due to truncation of the edges. Of course convolution as an integral also has a similar property.
By the way, where did that quoted factor of roughly 11000 come from?
sum(rt)^2
ans =
10816
Might be coincidence. Or not. Think about it.

why is the vector coming out of 'trapz' function as NAN?

i am trying to calculate the inverse fourier transform of the vector XRECW. for some reason i get a vector of NANs.
please help!!
t = -2:1/100:2;
x = ((2/5)*sin(5*pi*t))./((1/25)-t.^2);
w = -20*pi:0.01*pi:20*pi;
Hw = (exp(j*pi.*(w./(10*pi)))./(sinc(w./(10*pi)))).*(heaviside(w+5*pi)-heaviside(w-5*pi));%low pass filter
xzohw = 0;
for q=1:20:400
xzohw = xzohw + x(q).*(2./w).*sin(0.1.*w).*exp(-j.*w*0.2*((q-1)/20)+0.5);%calculating fourier transform of xzoh
end
xzohw = abs(xzohw);
xrecw = abs(xzohw.*Hw);%filtering the fourier transform high frequencies
xrect=0;
for q=1:401
xrect(q) = (1/(2*pi)).*trapz(xrecw.*exp(j*w*t(q))); %inverse fourier transform
end
xrect = abs(xrect);
plot(t,xrect)
Here's a direct answer to your question of "why" there is a nan. If you run your code, the Nan comes from dividing by zero in line 7 for computing xzohw. Notice that w contains zero:
>> find(w==0)
ans =
2001
and you can see in line 7 that you divide by the elements of w with the (2./w) factor.
A quick fix (although it is not a guarantee that your code will do what you want) is to avoid including 0 in w by using a step which avoids zero. Since pi is certainly not divisible by 100, you can try taking steps in .01 increments:
w = -20*pi:0.01:20*pi;
Using this, your code produces a plot which might resemble what you're looking for. In order to do better, we might need more details on exactly what you're trying to do, or what these variables represent.
Hope this helps!