I want to use SchemaSpy, but I my database is used heavily 24/7 and the DBA won't give me access, even readonly. However, i can give the DBA some commands and he can run them and give me the results.
Is it possible for SchemaSpy to run offline mode? In other words, Can I give it a dump of all the "CREATE TABLE, CREATE INDEX" and a list of all the sizes of the tables, and then it can generate the report?
Ok, The best thing about schemaspy is that it automatically runs and collects all the objects and in the case of the tables performed a count.
In your specific case you can use a work around as follows.
Ask your DBA for a dump or even the empty bank creation script, just the structures. And direct schemaspy to that bank that simulates your production.
By the way I have created a docker image that uses schamespy to document all the bases of a server.
https://github.com/krismorte/database-diagrams
Related
I often have to execute complex sql scripts in a single transaction on a large PostgreSQL database and I would like to verify everything that was changed during the transaction.
Verifying each single entry on each table "by hand" would take ages.
Dumping the database before and after the script to plain sql and using diff on the dumps isn't really an option since each dump would be about 50G of data.
Is there a way to show all the data that was added, deleted or modified during a single transaction?
Dude, What are you looking for is the most searchable thing on the internet when it comes to capturing Database changes. It is a kind of version control we can say.
But as long as I know, sadly there are no in-built approaches are available in PostgreSQL or MySql. But you can overcome it by setting/adding some triggers for your most usable operations.
You can create some backup schemas, and tables to capture your changes that are changed(updated), created, or deleted.
In this way you can achieve what you want. I know this process is fully manual, But really effective.
If you need to analyze the script's behaviour only sporadically, then the easiest approach would be to change server configuration parameter log_min_duration_statement to 0 and then back to any value it had before the analysis. Then all of the script activity will be written to the instance log.
This approach is not suitable if your storage is not prepared to accommodate this amount of data, or for systems in which you don't want sensitive client data to be written to a plain-text log file.
I'm trying to migrate our database engine from MsSql to PostgreSQL. In our automated test, we restore the database back to "clean" state at the start of every test. We do this by comparing the "diff" between the working copy of the database with the clean copy (table by table). Then copying over any records that have changed. Or deleting any records that have been added. So far this strategy seems to be the best way to go about for us because per test, not a lot of data is changed, and the size of the database is not very big.
Now I'm looking for a way to essentially do the same thing but with PostgreSQL. I'm considering doing the exact same thing with PostgreSQL. But before doing so, I was wondering if anyone else has done something similar and what method you used to restore data in your automated tests.
On a side note - I considered using MsSql's snapshot or backup/restore strategy. The main problem with these methods is that I have to re-establish the db connection from the app after every test, which is not possible at the moment.
If you're okay with some extra storage, and if you (like me) are particularly not interested in re-inventing the wheel in terms of checking for diffs via your own code, you should try creating a new DB (per run) via templates feature of createdb command (or CREATE DATABASE statement) in PostgreSQL.
So for e.g.
(from bash) createdb todayDB -T snapshotDB
or
(from psql) CREATE DATABASE todayDB TEMPLATE snaptshotDB;
Pros:
In theory, always exact same DB by design (no custom logic)
Replication is a file-transfer (not DB restore). So far less time taken (i.e. doesn't run SQL again, doesn't recreate indexes / restore tables etc.)
Cons:
Takes 2x the disk space (although template could be on a low performance NFS etc)
For my specific situation. I decided to go back to the original solution. Which is to compare the "working" copy of the database with "clean" copy of the database.
There are 3 types of changes.
For INSERT records - find max(id) from clean table and delete any record on working table that has higher ID
For UPDATE or DELETE records - find all records in clean table EXCEPT records found in working table. Then UPSERT those records into working table.
We have a SaaS application where each tenant has its own database in Postgres. How would I apply a patch to all the databses? For example if I want to add a table or add a column to a table, I have to either write a program that loops through all databases and execute a SQL against them or using pgadmin, go through them one by one.
Is there smarter and/or faster way?
Any help is greatly appreciated.
Yes, there's a smarter way.
Don't create a new database for each tenant. If everything is in one database then you only need to alter one database.
Pick one database, alter each table to have the column TENANT and add this to the primary key. Then insert into this database every record for all tenants and drop the other databases (obviously considerably more work than this as your application will need to be changed).
The differences with your approach are extensively discussed elsewhere:
What problems will I get creating a database per customer?
What are the advantages of using a single database for EACH client?
Multiple schemas versus enormous tables
Practicality of multiple databases per client vs one database
Multi-tenancy - single database vs multiple database
If you don't put everything in one database then I'm afraid you have to alter them all individually, and doing it programatically would be simplest.
At a higher level, all multi-tenant applications follow one of three approaches:
One tenant's data lives in one database,
One tenant's data lives in one schema, or
Add a tenant_id / account_id column to your tables (shared schema).
I usually find that developers use the following criteria when they evaluate these different approaches.
Isolation: Since you can put each tenant into its own database in one hand, and have tenants share the same table on the other, this becomes the most apparent dimension. If you provide your users raw SQL access or you're in a regulated industry such as healthcare, you may need strict guarantees from your database. That said, PostgreSQL 9.5 comes with row level security policies that makes this less of a concern for most applications.
Extensibility: If your tenants are sharing the same schema (approach #3), and your tenants have fields that varies between them, then you need to think about how to merge these fields.
This article on multi-tenant databases has a great summary of different approaches. For example, you can add a dozen columns, call them C1, C2, and so forth, and have your application infer the actual data in this column based on the tenant_id. PostgresQL 9.4 comes with JSONB support and natively allows you to use semi-structured fields to express variations between different tenants' data.
Scaling: Another criteria is how easily your database would scale-out. If you create a tenant per database or schema (#1 or #2 above), your application can make use of existing Ruby Gems or [Django packages][1] to simplify app integration. That said, you'll need to manually manage your tenants' data and the machines they live on. Similarly, you'll need to build your own sharding logic to propagate foreign key constraints and ALTER TABLE commands.
With approach #3, you can use existing open source scaling solutions, such as Citus. For example, this blog post describes how to easily shard a multi-tenant app with Postgres.
it's time for me to give back to the community :) So after 4 years, our multi-tenant platform is in production and I would like to share the following observations/experiences with all of you.
We used a database per each tenant. This has given us extreme flexibility as the size of the databases in the backups are not huge and hence we can easily import them into our staging environment for customers issues.
We use Liquibase for database development and upgrades. This has been a tremendous help to us, allowing us to package the entire build into a simple war file. All changes are easily versioned and managed very efficiently. There is a bit of learning curve here an there but nothing substantial. 2-5 days can significantly save you time.
Given that we use Spring/JPA/Hibernate, we use a technique called Dynamic Data Source Routing. So when a user logs-in, we find the related datasource with a lookup and connect them to the session to the right database. That's also when the Liquibase scripts get applied for updates.
This is, for now, I will come back with more later on.
Well, there are problems with one database for all tenants in our case for sure.
The backup file gets huge and becomes almost not practical hard to manage
For troubleshooting, we need to restore customer's data in our dev env, we just use that customer's backup file and usually the file is not as big as if we were to use one database for all customers.
Again, Liquibase has been key in allowing to manage updates across all the tenants seamlessly and without any issues. Without Liquibase, I can see lots of complications with this approach. So Liquibase, Liquibase and more Liquibase.
I also suspect that we would need a more powerful hardware to manage a huge database with large joins across millions of records vs much lighter database with much smaller queries.
In case of problems, the service doesn't go down for everyone and there will be limited to one or few tenants.
In general, for our purposes, this has been a great architectural decision and we are benefiting from it every day. One time we had one customer that didn't have their archiving active and their database size grew to over 3 GB. With offshore teams and slower internet as well as storage/bandwidth prices, one can see how things may become complicated very quickly.
Hope this helps someone.
--Rex
Similar to SQL script to create insert script, I need to generate a list of INSERT from a table to load onto another database (sqlite), like the dump command. I do this for sync purposes.
I have limitations because this will run on a cloud server without acces to the filesystem, so I need to do this in the DB (I can do this in the app server, I'm asking if is possible to do this in the DB directly).
In the app server, I load a datatable, walk his fieldnames and datatypes and build a insert... I wonder if exist a way to do the same in the DB...
I am not entirely sure whether that helps, but you can use simple ETL tool like 'Pentaho Kettle'. I used it once for a similar function and it did not take me more than 10 min. You can also schedule the jobs. I am not sure whether it is supported in database level.
Thanks,
Shankar
The problem is like this: my company has a service that cannot stop running for long periods of time and I was working on some modifications in the database structure used by this service.
Now that all my modifications are ready and well tested in a test bench environment, I want to export them to the running system. I could do this manually with IBExpert or FlameRobin, but I wanted to know if there is a more automated method for doing this (I feel dumb by spending a whole day creating tables, attributes, and so on one by one).
Is there?
You mention IBExpert - It has the Database Comparer Tool which generates desired DDL to merge databases structure.
And as you know you can use IBEBlock to fully automate that process.
PS. Or deploy your own app using IBEScript.dll - which lets you use all functionalities of the IBEBlock scripting language
Please read: http://ibexpert.net/ibe/index.php?n=Main.IBEScriptDll
Check out the database compare feature of Database Workbench (Windows client). It can compare whatever database objects you select and generate DDL to modify your destination database. Unfortunately you will need the Pro edition, but there is a 30 day trial.