Decode a Swift type that is a wrapped Codable type with an extra Codable property - swift

I've got a Codable type, let's say Car, that is defined as:
struct Car: Codable {
let age: Int
let color: String
}
I can encode/decode this just fine.
With my persistence system, when an object is stored it gets assigned an _id property, which is a String, e.g. 5cae04b533376609456d40ed.
As such, when I read the Data from the persistent store and then try to decode it there are extra bytes in there that represent the _id property and its associated String value.
I'm not in control of the various types that can be encoded and stored in the store. The only restriction on them is that they are Codable.
What I want to be able to do is decode the Data that I get when reading from the store (with the _id stuff included) into a type that is something like Wrapped<T: Codable>, which would be defined as something like (in the simplest form):
struct Wrapped<T: Codable> {
let _id: String
let value: T
}
However, I'm not sure to go about this.
One attempt I made was to to define a custom decode function but that didn't get very far as I can't seem to access the T type's CodingKeys, which makes things, as far as I can tell, impossible with that approach.
Maybe there's another approach that would make things work as I'd like?

You can write a custom decode function for your Wrapped type that parses out the _id and then passes the decoder along to the wrapped type so it can decode it's own properties:
struct Wrapped<T: Codable>: Decodable {
let _id: String
let value: T
private enum CodingKeys: String, CodingKey {
case _id
}
init(from decoder: Decoder) throws {
let container = try decoder.container(keyedBy: CodingKeys.self)
_id = try container.decode(String.self, forKey: ._id)
value = try T(from: decoder)
}
}

You can simply declare that the _id property shouldn't decoded by defining your custom CodingKeys and omitting _id from there. You also need to assign a default value to the non-decoded properties (_id in your case) if you want to use the automatically synthetised initializer.
For a concrete type:
struct Car: Codable {
let age: Int
let color: String
let _id:Int = 0
enum CodingKeys: String, CodingKey {
case age, color
}
}
You can achieve this for all your persisted types.
If you don't want to create the CodingKeys enum for all persisted types, you could follow the generic wrapper type approach you started, but you'll need to create custom init(from:) and encode(to:) methods.
struct Persisted<T: Codable>: Codable {
let _id:Int = 0
let value:T
init(from decoder:Decoder) throws {
value = try decoder.singleValueContainer().decode(T.self)
}
func encode(to encoder: Encoder) throws {
var container = encoder.singleValueContainer()
try container.encode(value)
}
}

Related

When to use CodingKeys in Decodable(Swift)

Let's say I want to decode a Person struct as follows.
struct Person: Decodable {
let firstName: String
let lastName: String
let age: Int: String
}
I understand that the data can be decoded only with above. Therefore if I'm not changing the properties to a custom name if there no difference between the above and below implementation?
Further is there other cases where you want to use CodingKeys? I'm confused when they are necessary other than for renaming purposes.
struct Person: Decodable {
let firstName: String
let lastName: String
let age: Int: String
}
enum CodingKeys: String, CodingKey {
case firstName
case lastName
case age
}
First of all there is a make-or-break rule for using CodingKeys:
You can omit CodingKeys completely if the JSON – or whatever Codable conforming format – keys match exactly the corresponding properties (like in your example) or the conversion is covered by an appropriate keyDecodingStrategy.
Otherwise you have to specify all CodingKeys you need to be decoded (see also reason #3 below).
There are three major reasons to use CodingKeys:
A Swift variable/property name must not start with a number. If a key does start with a number you have to specify a compatible CodingKey to be able to decode the key at all.
You want to use a different property name.
You want to exclude keys from being decoded for example an id property which is not in the JSON and is initialized with an UUID constant.
And CodingKeys are mandatory if you implement init(from decoder to decode a keyed container.
You can use CodingKeys in different ways for example, when you know that at least one of the name of values that you are expecting in your JSON is actually different from your "let or var" name.
Example:
struct Person: Decodable {
let firstName: String
let lastName: String
let age: Int: String
}
enum CodingKeys: String, CodingKey {
case firstName = "first_name"
case lastName
case age
}
Other case is when you are using class inheritance.
In conclusion, if you are absolutely sure that you are using the same variable name as your encoding key(JSON), you can omit it (but if you want to put it, it doesn't matter), but if there's a difference, maybe a change of your codingKeys like an uppercase or using different words, you should use the enum to map the correct key with the variable name.
CodingKeys can be extremely helpful if you have a JSON with arbitrary number of coding keys (also called dynamic keys). Here is an example.
import UIKit
// Consider JSON with infinite number of keys: "S001", "S002" and so on
let jsonData = """
{
"S001": {
"firstName": "Tony",
"lastName": "Stark"
},
"S002": {
"firstName": "Peter",
"lastName": "Parker"
},
"S003": {
"firstName": "Bruce",
"lastName": "Wayne"
}
}
""".data(using: .utf8)!
struct Student: Decodable {
let firstName: String
let lastName: String
}
struct DecodedArray: Decodable {
var array: [Student]
// Define DynamicCodingKeys type needed for creating
// decoding container from JSONDecoder
private struct DynamicCodingKeys: CodingKey {
// Use for string-keyed dictionary
var stringValue: String
init?(stringValue: String) {
self.stringValue = stringValue
}
// Use for integer-keyed dictionary
var intValue: Int?
init?(intValue: Int) {
// We are not using this, thus just return nil
return nil
}
}
init(from decoder: Decoder) throws {
// 1
// Create a decoding container using DynamicCodingKeys
// The container will contain all the JSON first level key
let container = try decoder.container(keyedBy: DynamicCodingKeys.self)
var tempArray = [Student]()
// 2
// Loop through each key (student ID) in container
for key in container.allKeys {
// Decode Student using key & keep decoded Student object in tempArray
let decodedObject = try container.decode(Student.self, forKey: DynamicCodingKeys(stringValue: key.stringValue)!)
tempArray.append(decodedObject)
}
// 3
// Finish decoding all Student objects. Thus assign tempArray to array.
array = tempArray
}
}
let decodedResult = try! JSONDecoder().decode(DecodedArray.self, from: jsonData)
Therefore if I'm not changing the properties to a custom name if there no difference between the above and below implementation?
Yes, but there's a bit of misunderstanding here. The two implementations you have are literally identical because in the second one the CodingKeys enum would never be used. To be used, the enum must be nested within the Decodable conforming type (Person in this case):
struct Person: Decodable {
let firstName: String
let lastName: String
let age: Int
enum CodingKeys: String, CodingKey {
case firstName
case lastName
case age
}
}
There is in practice no difference between this implementation and the ones you provided.
Further is there other cases where you want to use CodingKeys?
CodingKeys are not used solely by Decodable, they are also used by Encodable. When using Encodable, a reason to use CodingKeys is to specify only a subset of the instances fields should be serialized.

enum encoded value is nil while storing the class object in UserDefaults. Codable Protocol is already inherited

I am new to iOS and trying to store User object in UserDefaults. So that when the app is launched again, I can check user type and based on it, I need to navigate to relevant screen.
For that, I have created a User class as below (Codable) and it has one userType enum property!
enum UserType: Int, Codable {
case userType1 = 0
case userType2 = 1
case notDetermined = 2
init(from decoder: Decoder) throws {
let label = try decoder.singleValueContainer().decode(Int.self)
self = UserType(rawValue: label) ?? .notDetermined
}
}
class User: Codable {
public var userFullName: String? = ""
public var userType: UserType? //= .notDetermined
enum CodingKeys: String, CodingKey {
case userFullName
}
}
In my view Controller class, I am creating a new instance for User object and trying to store in user defaults as below:
let newUser = User()
newUser.userFullName = "Test"
newUser.userType = userTypeBtn.isSelected ? .userType1 : .userType2
when I print the newUser's userType, I can see proper value whichever is selected. But after that, when I am trying to store it in userDefaults as below, it returns nil for userType property.
do {
let encoded = try JSONEncoder().encode(newValue)
UserDefaults.standard.set(encoded, forKey: UserDefaultKey.currentUser)
UserDefaults.standard.sync()
} catch {
print("Unable to Encode User Object: (\(error))")
}
when I tried to print this encoded variable, and decoded it in console
JSONDecoder().decode(User.self, from: encoded).userType
it prints nil.
Please help me how can I store optional enum property in UserDefaults and retrieve it when needed using Codable
You should include userType in your CodingKeys enum:
enum CodingKeys: String, CodingKey {
case userFullName
case userType
}
Or just delete the CodingKeys enum entirely, since by default, all the properties are included as coding keys. The keys in the CodingKeys enum determines what the synthesised Codable implementation will encode and decode. If you don't include userType, userType will not be encoded, so it will not be stored into UserDefaults.
I am not getting it from Server and userType is an external property outside the JSON response
This is fine, because userType is optional. If the JSON does not have the key, it will be assigned nil. This might be a problem if you are also encoding User and sending it to the server, and that the server can't handle extra keys in the request, in which case you need two structs - one for storing to/loading from UserDefaults, one for parsing/encoding server response/request.
Remember to encode a new User to UserDefaults when you try this out, since the old one still doesn't have the userType encoded with it.
Observations
Having a custom implementation for Decodable part of enum UserType: Int, Codable is probably not the best idea. Swift compiler supports encoding/decoding enum X: Int out of the box without having you to write custom implementation for it. (In fact, starting with Swift 5.5, Swift compiler can now do this for enums that have cases with associated values as well.)
You should try to avoid having cases like .notDetermined. Either user has a type that's well defined or user.type is nil. You can easily define convenience getters on user itself to know about it's type.
Swift allows nesting of types, so having User.Kind instead of UserType is more natural in Swift.
Following implementation takes care of all of these points.
import Foundation
class User: Codable {
enum Kind: Int, Codable {
case free = 1
case pro = 2
}
public var fullName: String?
public var kind: Kind?
}
let newUser = User()
newUser.fullName = "Test"
newUser.kind = .free
do {
let encoded = try JSONEncoder().encode(newUser)
UserDefaults.standard.set(encoded, forKey: "appUser")
if let fetched = UserDefaults.standard.value(forKey: "appUser") as? Data {
let decoded = try JSONDecoder().decode(User.self, from: fetched)
print(decoded)
}
}
Above code includes definition, construction, encodeAndStore, fetchAndDecode and it does everything you need without any custom implementation.
Bonus
Above code does not print a nice description for the User. For that, you can add CustomStringConvertible conformance like this.
extension User: CustomStringConvertible {
var description: String {
"""
fullName: \(fullName ?? "")
kind: \(kind?.description ?? "")
"""
}
}
extension User.Kind: CustomStringConvertible {
var description: String {
switch self {
case .free: return "free"
case .pro: return "pro"
}
}
}
If you try print(decoded) after implementing this, you will clearly see what you want to see for User instance.
User.kind can be nil and I don't want to handle it with if let every time I need to check this from different screens in the app.
No worries, it can be simplified to this.
extension User {
var isFreeUser: Bool { kind == .free }
var isProUser: Bool { kind == .pro }
}

Xcode warning: Immutable property will not be decoded because it is declared with an initial value which cannot be overwritten

Running Xcode 12, my Swift 5 Xcode project now has warnings whenever a Decodable or Codable type declares a let constant with an initial value.
struct ExampleItem: Decodable {
let number: Int = 42 // warning
}
Immutable property will not be decoded because it is declared with an initial value which cannot be overwritten
Xcode suggests changing the let to a var:
Fix: Make the property mutable instead
var number: Int = 42
It also suggests the fix:
Fix: Set the initial value via the initializer or explicitly define a CodingKeys enum including a 'title' case to silence this warning
What is the purpose of this new warning? Should it be heeded, or ignored? Can this type of warning be silenced?
Should Xcode's fix be implemented? Or is there a better solution?
Noah's explanation is correct. It’s a common source of bugs and it's not immediately obvious what’s happening due to the “magical” behaviour of Codable synthesis, which is why I added this warning to the compiler, since it brings your attention to the fact that the property won't be decoded and makes you explicitly call it out if that's the expected behaviour.
As the fix-it explains, you have a couple of options if you want to silence this warning - which one you choose depends on the exact behaviour you want:
Pass the initial value via an init:
struct ExampleItem: Decodable {
let number: Int
init(number: Int = 42) {
self.number = number
}
}
This will allow number to be decoded, but you can also pass around instances of ExampleItem where the default value is used.
You can also use it directly inside init instead, during decoding:
struct ExampleItem: Decodable {
let number: Int
private enum CodingKeys: String, CodingKey {
case number
}
init(from decoder: Decoder) throws {
let container = try decoder.container(keyedBy: CodingKeys.self)
number = try container.decodeIfPresent(Int.self, forKey: .number) ?? 42
}
}
This will allow number to be decoded, but use 42 as the default value if the decoding fails.
Make the property a var, although you can also make it a private(set) var:
struct ExampleItem: Decodable {
var number: Int = 42
}
Making it a var will allow number to be decoded, but it will also allow callers to modify it. By marking it as private(set) var instead, you can disallow this if you want.
Define an explicit CodingKeys enum:
struct ExampleItem: Decodable {
let number: Int = 42
private enum CodingKeys: CodingKey {}
}
This will prevent number from being decoded. Since the enum has no cases, this makes it clear to the compiler that there are no properties that you want to decode.
This warning appears because immutable properties with initial values don't participate in decoding - after all, they're immutable and they have an initial value, which means that initial value will never be changed.
For example, consider this code:
struct Model: Decodable {
let value: String = "1"
}
let json = """
{"value": "2"}
"""
let decoder = JSONDecoder()
let model = try! decoder.decode(Model.self, from: json.data(using: .utf8)!)
print(model)
This will actually print Model(value: "1"), even though the json we gave it had value as "2".
In fact, you don't even need to provide the value in the data you're decoding, since it has an initial value anyway!
let json = """
{}
"""
let decoder = JSONDecoder()
let model = try! decoder.decode(Model.self, from: json.data(using: .utf8)!)
print(model) // prints "Model(value: "1")"
Changing the value to a var means it will decode correctly:
struct VarModel: Decodable {
var value: String = "1"
}
let json = """
{"value": "2"}
"""
let varModel = try! decoder.decode(VarModel.self, from: json.data(using: .utf8)!)
print(varModel) // "VarModel(value: "2")"
If you're seeing this error, it means your code has never correctly parsed the property in question when decoding. If you change it to a var, the property will be parsed correctly, which might be what you want - however, you should make sure that the data you're decoding always has that key set. For example, this will throw an exception (and crash since we're using try!):
let json = """
{}
"""
let decoder = JSONDecoder()
struct VarModel: Decodable {
var value: String = "1"
}
let varModel = try! decoder.decode(VarModel.self, from: json.data(using: .utf8)!)
In conclusion, Xcode's suggestion is probably viable in many cases, but you should evaluate on a case by case basis whether changing the property to a var will break your app's functionality.
If you want the property to always return the hard-coded initial value (which is what's happening right now), consider making it a computed property or a lazy var.
Solution: define an explicit CodingKeys enum to prevent id from decoded.
For example,
struct Course: Identifiable, Decodable {
let id = UUID()
let name: String
private enum CodingKeys: String, CodingKey {
case name
}
init(name: String) { self.name = name }
init(from decoder: Decoder) throws {
let container = try decoder.container(keyedBy: CodingKeys.self)
let name = try container.decodeIfPresent(String.self, forKey: .name)
self.name = name ?? "default-name"
}
}
The suggested workarounds by #SuyashSrijan suppresses the warning but may also lead to further developer errors.
I've written an alternative work around here:
public struct IdentifierWrapper<T>: Identifiable {
public let id = UUID()
public let value: T
}
Usage:
struct Model: Codable, Identifiable {
public let name: String
}
let wrapper = IdentifierWrapper(value: Model(name: "ptrkstr"))

Trying to make a class codable in Swift but it is not the correct format?

I am creating a class that conforms to codable.
I have this:
import Foundation
class Attribute : Decodable {
var number: Int16
var label: String?
var comments: String?
init(number:Int16, label:String?, comments:String?) {
self.number = number
self.label = label
self.comments = comments
}
// Everything from here on is generated for you by the compiler
required init(from decoder: Decoder) throws {
let keyedContainer = try decoder.container(keyedBy: CodingKeys.self)
number = try keyedContainer.decode(Int16.self, forKey: .number)
label = try keyedContainer.decode(String.self, forKey: .label)
comments = try keyedContainer.decode(String.self, forKey: .comments)
}
enum CodingKeys: String, CodingKey {
case number
case label
case comments
}
}
extension Attribute: Encodable {
public func encode(to encoder: Encoder) throws {
var container = encoder.container(keyedBy: CodingKeys.self)
try container.encode(number, forKey: .number)
try container.encode(label, forKey: .label)
try container.encode(comments, forKey: .comments)
}
}
This is apparently fine.
I create an instance of Attribute and encode it using:
let newAttribute = Attribute.init(number:value.number, label:value.label, comments:value.shortcut)
Then I create an array of these attributes and encode that array using
let array = try JSONEncoder().encode(array)
This will encode the array of Attribute to Data.
Then I try to convert the Data object back to the array of Attribute using this:
let array = try JSONDecoder().decode(Attribute.self, from: data) as! Array<Attribute>
First error I get is this:
Cast from 'Attribute' to unrelated type 'Array< Attribute>' always fails
If I remove the cast part I catch this error when the decode tries...
Optional("The data isn’t in the correct format.")
Any ideas?
You need to pass in the array to decode, don't pass in the array element type, then try to force-cast that to an array, that doesn't make any sense. YourType and Array<YourType> are two different and completely unrelated types, so you cannot cast one to the other and you need to use the specific type when calling JSONDecoder.decode(_:from:).
let array = try JSONDecoder().decode([Attribute].self, from: data)
Btw as already pointed out in your previous question, there is no need to manually write the init(from:) and encode(to:) methods or the CodingKeys enum since for your simple type, the compiler can auto-synthesise all of those for you. Also, if you used a struct instead of class, you'd also get the member wise initialiser for free.

How can I decode when I don't know the type, with class inheritance?

I have a base class Action, which is an Operation. It has a bunch of crufty Operation stuff in it (KVO and all that). The base class itself doesn't actually need to encode/decode anything.
class Action : Operation, Codable {
var _executing = false
...
}
I have a bunch of Action sub-classes, like DropboxUploadAction, which are directly instantiated with an Input struct they define:
let actionInput = DropboxUploadAction.Input.init(...)
ActionManager.shared.run(DropboxUploadAction.init(actionInput, data: binaryData), completionBlock: nil)
Here's what the subclasses look like:
class DropboxUploadAction : Action {
struct Input : Codable {
var guid: String
var eventName: String
var fileURL: URL?
var filenameOnDropbox: String
var share: Bool
}
struct Output : Codable {
var sharedFileLink: String?
var dropboxPath: String?
}
var input: Input
var output: Output
...
required init(from decoder: Decoder) throws {
let values = try decoder.container(keyedBy: CodingKeys.self)
input = try values.decode(Input.self, forKey: .input)
output = try values.decode(Output.self, forKey: .output)
let superDecoder = try values.superDecoder()
try super.init(from: superDecoder)
}
fileprivate enum CodingKeys: String, CodingKey {
case input
case output
}
override func encode(to encoder: Encoder) throws {
var container = encoder.container(keyedBy: CodingKeys.self)
try container.encode(input, forKey: .input)
try container.encode(output, forKey: .output)
try super.encode(to: container.superEncoder())
}
}
When some situations occur such as a loss of internet connectivity, these classes need to be serialized to disk for later. That's fine, because at the time I have references to them and can encode them with JSONEncoder().encode(action), no problem.
But later when I want to deserialize them, I need to specify the type of the class and I don't know what it is. I have some data and I know it can be decoded to a class that inherits from Action, but I don't know which subclass it is. I'm loathe to encode that in the filename. Is there some way to decode it as the base class Action, then in the decode() method of Action, somehow detect the proper class and redirect?
In the past I've used NSKeyedUnarchiver.setClass() to handle this. But I don't know how to do that with Swift 4's Codable, and I understand that NSCoding is deprecated now so I shouldn't use NSKeyedUnarchiver anymore...
If it helps: I have a struct Types : OptionSet, Codable which each subclass returns, so I don't have to use the name of the class as its identity.
Thanks for any help!
Uhhh NSCoding isn't deprecated. We still use it when instantiating UIViewControllers from storyboard via init(coder:).
Also, if you still don't want to use NSCoding, you can just store the Input, Output and Types to a struct and serialize that to disk instead.
struct SerializedAction {
let input: Input
let output: Output
let type: Type
}
When needed, you can decode that and decide the correct Action to initialize with your input/output via the type property.
class DropboxAction: Action {
...
init(input: Input, output: Output) {
...
}
}
You don't necessarily need to encode the entire Action object.