I have this data-frame:
from pyspark.mllib.linalg.distributed import IndexedRow
rows = sc.parallelize([[1, "A"], [1, 'B'] , [1, "A"], [2, 'A'], [2, 'C'] ,[3,'A'], [3, 'B']])
rows_df = rows.toDF(["session_id", "product"])
rows_df.show()
+----------+-------+
|session_id|product|
+----------+-------+
| 1| A|
| 1| B|
| 1| A|
| 2| A|
| 2| C|
| 3| A|
| 3| B|
+----------+-------+
I want to know how many joint sessions each product pair have together. The same products can be in a session multiple times, but I only want one count per session per product pair.
Sample Output:
+---------+---------+-----------------+
|product_a|product_b|num_join_sessions|
+---------+---------+-----------------+
| A| B| 2|
| A| C| 1|
| B| A| 2|
| B| C| 0|
| C| A| 1|
| C| B| 0|
+---------+---------+-----------------+
I'm lost on how to implement this in pyspark.
Getting the joint session count for pairs that have joint sessions is fairly easy. You can achieve this by joining the DataFrame to itself on session_id and filtering out the rows where the products are the same.
Then you group by the product pairs and count the distinct session_ids.
import pyspark.sql.functions as f
rows_df.alias("l").join(rows_df.alias("r"), on="session_id", how="inner")\
.where("l.product != r.product")\
.groupBy(f.col("l.product").alias("product_a"), f.col("r.product").alias("product_b"))\
.agg(f.countDistinct("session_id").alias("num_join_sessions"))\
.show()
#+---------+---------+-----------------+
#|product_a|product_b|num_join_sessions|
#+---------+---------+-----------------+
#| A| C| 1|
#| C| A| 1|
#| B| A| 2|
#| A| B| 2|
#+---------+---------+-----------------+
(Side note: if want ONLY unique pairs of products, change the != to < in the where function).
The tricky part is that you also want the pairs that don't have joint sessions. This can be done, but it won't be efficient because you will need to get a Cartesian product of every product pairing.
Nevertheless, here is one approach:
Start with the above and RIGHT join in the Cartesian product of the distinct products pairs.
rows_df.alias("l").join(rows_df.alias("r"), on="session_id", how="inner")\
.where("l.product != r.product")\
.groupBy(f.col("l.product").alias("product_a"), f.col("r.product").alias("product_b"))\
.agg(f.countDistinct("session_id").alias("num_join_sessions"))\
.join(
rows_df.selectExpr("product AS product_a").distinct().crossJoin(
rows_df.selectExpr("product AS product_b").distinct()
).where("product_a != product_b").alias("pairs"),
on=["product_a", "product_b"],
how="right"
)\
.fillna(0)\
.sort("product_a", "product_b")\
.show()
#+---------+---------+-----------------+
#|product_a|product_b|num_join_sessions|
#+---------+---------+-----------------+
#| A| B| 2|
#| A| C| 1|
#| B| A| 2|
#| B| C| 0|
#| C| A| 1|
#| C| B| 0|
#+---------+---------+-----------------+
Note: the sort is not needed, but I included it to match the order of the desired output.
I believe this should do it:
import pyspark.sql.functions as F
joint_sessions = rows_df.withColumnRenamed(
'product', 'product_a'
).join(
rows_df.withColumnRenamed('product', 'product_b'),
on='session_id',
how='inner'
).filter(
F.col('product_a') != F.col('product_b')
).groupBy(
'product_a',
'product_b'
).agg(
F.countDistinct('session_id').alias('num_join_sessions')
).select(
'product_a',
'product_b',
'num_join_sessions'
)
joint_sessions.show()
Related
I'm working in databricks. I have the following dataframe:
+----------+---+-----+
| date|cat|value|
+----------+---+-----+
|2022-08-11| a| 1|
|2022-08-12| a| 1|
|2022-08-13| a| 1|
|2022-08-14| a| 1|
|2022-08-15| a| 1|
|2022-08-16| a| 1|
|2022-08-17| a| 2|
|2022-08-18| a| 2|
|2022-08-19| a| 2|
|2022-08-20| a| 2|
|2022-08-21| a| 2|
|2022-08-22| a| 2|
|2022-08-11| b| 1|
|2022-08-12| b| 1|
|2022-08-13| b| 1|
|2022-08-14| b| 1|
|2022-08-15| b| 1|
|2022-08-16| b| 1|
|2022-08-17| b| 3|
|2022-08-18| b| 3|
|2022-08-19| b| 3|
|2022-08-20| b| 3|
|2022-08-21| b| 3|
|2022-08-22| b| 3|
+----------+---+-----+
I want to be able to compare the sum of the values between the 17 and the 22 (week1) and between the 11 and the 16 (week2). Start end and end date of each period are predefined.
So far I've tried something like this:
w = (Window.partitionBy('cat'))
df = (df
.withColumn('date', f.to_date('date', 'yyyy-MM-dd'))
.withColumn('value_week_1',
f.when(
(f.col('date') >= '2022-08-17') &
(f.col('date') <= '2022-08-22'),
f.sum('value').over(w)
)
)
.withColumn('value_week_2',
f.when(
(f.col('date') >= '2022-08-11') &
(f.col('date') <= '2022-08-16'),
f.sum('value').over(w)
)
)
)
but It doesn't work and I'm not sure I'm going in the right direction.
Ultimately I'd like to have something like this:
+----------+---+-----+----+------+--------+
| date|cat|value| w1| w2| diff|
+----------+---+-----+----+------+--------+
|2022-08-11| a| 1| 6| 12| 6|
|2022-08-12| a| 1| 6| 12| 6|
|2022-08-13| a| 1| 6| 12| 6|
|2022-08-14| a| 1| 6| 12| 6|
|2022-08-15| a| 1| 6| 12| 6|
|2022-08-16| a| 1| 6| 12| 6|
|2022-08-17| a| 2| 6| 12| 6|
|2022-08-18| a| 2| 6| 12| 6|
|2022-08-19| a| 2| 6| 12| 6|
|2022-08-20| a| 2| 6| 12| 6|
|2022-08-21| a| 2| 6| 12| 6|
|2022-08-22| a| 2| 6| 12| 6|
|2022-08-11| b| 3| 18| 30| 12|
|2022-08-12| b| 3| 18| 30| 12|
|2022-08-13| b| 3| 18| 30| 12|
|2022-08-14| b| 3| 18| 30| 12|
|2022-08-15| b| 3| 18| 30| 12|
|2022-08-16| b| 3| 18| 30| 12|
|2022-08-17| b| 5| 18| 30| 12|
|2022-08-18| b| 5| 18| 30| 12|
|2022-08-19| b| 5| 18| 30| 12|
|2022-08-20| b| 5| 18| 30| 12|
|2022-08-21| b| 5| 18| 30| 12|
|2022-08-22| b| 5| 18| 30| 12|
+----------+---+-----+----+------+--------+
I think we don't need to use window in your case, we can just:
df_agg = df\
.withColumn('week', func.when((func.col('date')>='2022-08-17')&(func.col('date')<='2022-08-22'), func.lit('w1')).otherwise(func.lit('w2')))\
.groupby('cat').pivot('week')\
.agg(func.sum('value'))\
.withColumn('diff', func.col('w2')-func.col('w1'))
We can just create a new column called week to see if the date is under which week, then create a pivot table.
w =Window.partitionBy('cat').orderBy('cat')
df1 = (
#Create week column to help partion. Use row number to create cululative day count. Find each 7th day using pytho's modulo
df.withColumn('wk',(~(row_number().over(w)%7>0)).cast('int')).withColumn('wk',F.sum('wk').over(Window.partitionBy('cat').orderBy().rowsBetween(-sys.maxsize, 0))+1)
#Finfd the cumulative sum per group per week
.groupby('cat','wk').agg(F.collect_list('date').alias('date'),F.sum('value').alias('value')).withColumn('date', explode('date'))
# #Put the total sum in an array in preparation for pivot
.withColumn('value_1', F.collect_set('value').over(Window.partitionBy('cat').orderBy('date','value').rowsBetween(-sys.maxsize, sys.maxsize)))
# #pivot and create week columns
.withColumn('wk',F.array(F.struct(*[F.col('value_1')[i].alias(f"week_{i+1}")for i in range(2)]))).selectExpr('*','inline(wk)').drop('wk','value_1')
# #Find the difference
.withColumn('diff', abs(col('week_1')-col('week_2')))
).show()
There are somethings about this problem that do not make sense. Please see end of article for my observations.
First, the dates from 8/11 to 8/16 do not make up a whole week. Second, the labels of week-1 being 8/17 to 8/22 and week-2 being 8/11 to 8/16 are logically backwards.
I am going to solve this problem using PySpark and Spark SQL since it is straight forward.
#
# Create sample data
#
dat1 = [
("2022-08-11","a",1),
("2022-08-12","a",1),
("2022-08-13","a",1),
("2022-08-14","a",1),
("2022-08-15","a",1),
("2022-08-16","a",1),
("2022-08-17","a",2),
("2022-08-18","a",2),
("2022-08-19","a",2),
("2022-08-20","a",2),
("2022-08-21","a",2),
("2022-08-22","a",2),
("2022-08-11","b",1),
("2022-08-12","b",1),
("2022-08-13","b",1),
("2022-08-14","b",1),
("2022-08-15","b",1),
("2022-08-16","b",1),
("2022-08-17","b",3),
("2022-08-18","b",3),
("2022-08-19","b",3),
("2022-08-20","b",3),
("2022-08-21","b",3),
("2022-08-22","b",3)
]
col1 = ["date", "cat", "value"]
df1 = spark.createDataFrame(data=dat1, schema=col1)
df1.createOrReplaceTempView("sample_data")
The above code create a temporary view with the data set.
#
# Core data - add category w0
#
stmt = """
select
date,
cat,
value,
case
when date >= "2022-08-11" and date <= "2022-08-16" then 2
when date >= "2022-08-17" and date <= "2022-08-22" then 1
else 0
end as w0
from sample_data as q1
"""
df2 = spark.sql(stmt)
df2.createOrReplaceTempView("core_data")
The code above labels the data as week-1 or week-2 and save this category information as w0. This could have been hard coded into the dataset above.
#
# Pivot data - sum vaule by cat, pivot on w0
#
stmt = """
select * from
(
select cat, w0, value from core_data
)
pivot (
cast(sum(value) as DECIMAL(4, 2)) as total
for w0 in (1 w1, 2 w2)
)
"""
df3 = spark.sql(stmt)
df3.createOrReplaceTempView("pivot_data")
The code above creates a column per week category and summarizes the values.
Please note, the result set has 3/5 for cat = b while the original data set has 1/3. I am using your original data set.
Last but not least, we join the core_data to the pivot_data and create a calculated column of the difference of (w1-w2).
You can use spark.sql() to create a dataframe and save this result as a file if you want.
To recap, the length of the week categories is not 7 days, labeling a prior week a greater number than the current does not make sense, and the expected result set is wrong in your example since the input set has different numbers.
In short, working with temporary views allows you to leverage your existing T-SQL skills.
I have a pyspark dataframe that looks like this
import pandas as pd
so = pd.DataFrame({'id': ['a','a','a','a','b','b','b','b','c','c','c','c'],
'time': [1,2,3,4,1,2,3,4,1,2,3,4],
'group':['A','A','A','A','A','A','A','A','B','B','B','B'],
'value':['S','C','C','C', 'S','C','H', 'H', 'S','C','C','C']})
df_so = spark.createDataFrame(so)
df_so.show()
+---+----+-----+-----+
| id|time|group|value|
+---+----+-----+-----+
| a| 1| A| S|
| a| 2| A| C|
| a| 3| A| C|
| a| 4| A| C|
| b| 1| A| S|
| b| 2| A| C|
| b| 3| A| H|
| b| 4| A| H|
| c| 1| B| S|
| c| 2| B| C|
| c| 3| B| C|
| c| 4| B| C|
+---+----+-----+-----+
I would like to create the "transition matrix" of value by group
The transition matrix indicates what is the probability of e.g. going from value S to value C within each id while time progresses.
Example:
For group A:
We have in total 6 movements
S->C goes 1 time for id==a and 1 time for id==b, so S to C is (1+1)/6
C->S is 0, since within id there is no transition from C to S
C->C is 2/6
C->H is 1/6
H->H is 1/6
Respectively we can do the same for group B
Is there a way to do this in pyspark ?
First I use lag to make the source column (left side of transition) of the transition for each row, then count the frequency group by source & value(target) divided by the total count.
lagw = Window.partitionBy(['group', 'id']).orderBy('time')
frqw = Window.partitionBy(['group', 'source', 'value'])
ttlw = Window.partitionBy('group')
df = (df.withColumn('source', F.lag('value').over(lagw))
.withColumn('transition_p', F.count('source').over(frqw) / F.count('source').over(ttlw)))
df.show()
# +---+----+-----+-----+------+------------+
# | id|time|group|value|source|transition_p|
# +---+----+-----+-----+------+------------+
# | c| 1| B| S| null| 0.0|
# | c| 3| B| C| C| 0.666666666|
# | c| 4| B| C| C| 0.666666666|
# | c| 2| B| C| S| 0.333333333|
# | b| 1| A| S| null| 0.0|
# .....
If I understand what you like at the end,
(df.filter(df.group == 'A')
.groupby('source')
.pivot('value')
.agg(F.first('transition_p'))
).show()
# +------+---------+---------+---------+
# |source| C| H| S|
# +------+---------+---------+---------+
# | null| null| null| 0.0|
# | C|0.3333333|0.1666666| null|
# | S|0.3333333| null| null|
# | H| null|0.1666666| null|
# +------+---------+---------+---------+
The definition of transition matrix T poses that all rows of T should sum to one, which is different from your calculation.
To calculate the transition matrix (as in the definition of wikipedia), first calculate the frequency table. The code should be run after selecting the group subset.
Count the number of transitions from A to B
df = pd.DataFrame({'id': ['a','a','a','a','b','b','b','b'],
'time': [1,2,3,4,1,2,3,4],
'page':['S','C','C','C', 'S','C','H', 'H']})
win1 = Window.partitionBy(["id"]).orderBy("time")
df = df.withColumn("page_next", F.lead("page",1).over(win1))
df = df.where(F.col("page_next").isNotNull())
Find all node permutations and then join the empirical data
nodes = df.select("page").drop_duplicates()
paths = nodes.crossJoin(nodes).toDF("page", "page_next")
data = df.groupby("page", "page_next").agg(F.count(F.col("id")).alias("cnts"))
path_cnts = paths.join(data, on=["page", "page_next"], how="left").fillna(0)
freq_matrix = path_cnts.groupby("page").pivot("page_next").agg(F.first("cnts"))
This should return the frequency matrix where each cell contains numbers of transitions observed from row node A to column node B.
Normalize each row to sum to 1.
node_names = freq_matrix.columns[1:]
row_sum = sum([freq_matrix[node] for node in node_names])
trans_matrix = freq_matrix.select("page", *((freq_matrix[node] / row_sum).alias(node) for node in node_names))
If you want the transition matrix as per your definition.
Simply divide each cell by data.count().
This does not utilize groupby enough, so seems slower.
I have a dataframe
user day amount
a 2 10
a 1 14
a 4 5
b 1 4
You see that, the maximum value of day is 4, and the minimum value is 1. I want to fill 0 for amount column in all missing days of all users, so the above data frame will become.
user day amount
a 2 10
a 1 14
a 4 5
a 3 0
b 1 4
b 2 0
b 3 0
b 4 0
How could I do that in PySpark? Many thanks.
Here is one approach. You can get the min and max values first , then group on user column and pivot, then fill in missing columns and fill all nulls as 0, then stack them back:
min_max = df.agg(F.min("day"),F.max("day")).collect()[0]
df1 = df.groupBy("user").pivot("day").agg(F.first("amount").alias("amount")).na.fill(0)
missing_cols = [F.lit(0).alias(str(i)) for i in range(min_max[0],min_max[1]+1)
if str(i) not in df1.columns ]
df1 = df1.select("*",*missing_cols)
#+----+---+---+---+---+
#|user| 1| 2| 4| 3|
#+----+---+---+---+---+
#| b| 4| 0| 0| 0|
#| a| 14| 10| 5| 0|
#+----+---+---+---+---+
#the next step is inspired from https://stackoverflow.com/a/37865645/9840637
arr = F.explode(F.array([F.struct(F.lit(c).alias("day"), F.col(c).alias("amount"))
for c in df1.columns[1:]])).alias("kvs")
(df1.select(["user"] + [arr])
.select(["user"]+ ["kvs.day", "kvs.amount"]).orderBy("user")).show()
+----+---+------+
|user|day|amount|
+----+---+------+
| a| 1| 14|
| a| 2| 10|
| a| 4| 5|
| a| 3| 0|
| b| 1| 4|
| b| 2| 0|
| b| 4| 0|
| b| 3| 0|
+----+---+------+
Note, since column day was pivotted , the dtype might have changed so you may have to cast them back to the original dtype
Another way to do this is to use sequence, array functions and explode. (spark2.4+)
from pyspark.sql import functions as F
from pyspark.sql.window import Window
w=Window().partitionBy(F.lit(0))
df.withColumn("boundaries", F.sequence(F.min("day").over(w),F.max("day").over(w),F.lit(1)))\
.groupBy("user").agg(F.collect_list("day").alias('day'),F.collect_list("amount").alias('amount')\
,F.first("boundaries").alias("boundaries")).withColumn("boundaries", F.array_except("boundaries","day"))\
.withColumn("day",F.flatten(F.array("day","boundaries"))).drop("boundaries")\
.withColumn("zip", F.explode(F.arrays_zip("day","amount")))\
.select("user","zip.day", F.when(F.col("zip.amount").isNull(),\
F.lit(0)).otherwise(F.col("zip.amount")).alias("amount")).show()
#+----+---+------+
#|user|day|amount|
#+----+---+------+
#| a| 2| 10|
#| a| 1| 14|
#| a| 4| 5|
#| a| 3| 0|
#| b| 1| 4|
#| b| 2| 0|
#| b| 3| 0|
#| b| 4| 0|
#+----+---+------+
I have a Pyspark dataframe df, like following:
+---+----+---+
| id|name| c|
+---+----+---+
| 1| a| 5|
| 2| b| 4|
| 3| c| 2|
| 4| d| 3|
| 5| e| 1|
+---+----+---+
I want to add a column match_name that have value from the name column where id == c
Is it possible to do it with function withColumn()?
Currently i have to create two dataframes and then perform join.
Which is inefficient on large dataset.
Expected Output:
+---+----+---+----------+
| id|name| c|match_name|
+---+----+---+----------+
| 1| a| 5| e|
| 2| b| 4| d|
| 3| c| 2| b|
| 4| d| 3| c|
| 5| e| 1| a|
+---+----+---+----------+
Yes, it is possible, with when:
from pyspark.sql.functions import when, col
condition = col("id") == col("match")
result = df.withColumn("match_name", when(condition, col("name"))
result.show()
id name match match_name
1 a 3 null
2 b 2 b
3 c 5 null
4 d 4 d
5 e 1 null
You may also use otherwise to provide a different value if the condition is not met.
assume there is a dataframe as follows:
a| b|
1| 3|
1| 5|
2| 6|
2| 9|
2|14|
I want to produce a final dataframe like this
a| b| c
1| 3| 0
1| 5| -2
2| 6| -6
2| 9| -10
2| 14| -17
The value of c is computed for every row except the first one as a-b+c for the previous row. I tried to use lag as well as rowsBetween, but no success Since "c" value does not exist and it is filled with random variable!!
val w = Window.partitionBy().orderBy($"a", $"b)
df.withColumn("c", lead($"a", 1, 0).over(w) - lead($"b", 1, 0).over(w) + lead($"c", 1, 0).over(w))
You can't reference c while calculating c; What you need is a cumulative sum, which could simply be:
df.withColumn("c", sum(lag($"a" - $"b", 1, 0).over(w)).over(w)).show
+---+---+---+
| a| b| c|
+---+---+---+
| 1| 3| 0|
| 1| 5| -2|
| 2| 6| -6|
| 2| 9|-10|
| 2| 14|-17|
+---+---+---+
But note this is inefficient due to the lack of the partition column.