I want to deploy Strapi on GKE (Kubernetes), I have a docker-compose file, and I think I can use kcompose to create the deployment.
My questions is, has anyone used Mongodb Atlas + GKE or should I deploy Mongo on my own?
The question is more opinion based. It all depends on your needs.
If your needs match one of below you should stay with MongoDB:
Your app runs on-prem and contracts or privacy statements dont allow you to store data with a 3rd party.
You need large storage but not much query power.
There is other privacy/compliance issues.
Your app does not have internet access (firewalls, isolated environments)
You are running 3rd party applications that require a very old version of MongoDB
Here are some MongoDB Altas advantages:
Easily deploy, modify, and elastically scale their database clusters with a few clicks or an API call
Gain complete visibility into the performance the database and the underlying instances
Focus more on development, with built-in operational and security best practices such as geographically distributed, auto-healing clusters, and always-on authentication and encryption.
The best way would be if you will check how work with MongoDB Atlas on GCP looks alike. You can check this tutorial.
Related
CONTEXT: I have been learning Kubernetes and trying to get some hands-on experience. I have been using AKS to abstract the complexity of having to deal with the control plane (and because I have a free student azure account). I am deploying a NodeJS app that connects to the MongoDB database. So far the deployment has been successful but I am using MongoDB Atlas and connecting to it.
Based on the little I have learned about Stateful sets, the MongoDB Atlas service seems a lot easier and more convenient but my question is, when would it be a better idea to consider deploying a stateful set with MongoDB database? (running on the pod) What's more cost-effective? More easily scalable?
I realize the questions might be a little bit vague but I am just getting started with Kubernetes..
disclaimer: This is not a production application, just something simple I am using to learn K8S
Official docs docs uses statefullset and that would make sense. Generally all DB kind of applications deployed as statefullset. Because there can be states that nodes are not sync with each other and that would create data inconsistencies between nodes(mongodb nodes not kubernetes).
You can deploy MongoDB as deployment. I have seen it deployed. But most clients use a connection string to connect(a string of multiple node addresses). And since kubernetes exposes statefullsets with headless services you should be okay.
For learning purpose, I advice you to deploy your MongoDB in a StatefulSet. Then you can learn how it works and what problem you could encounter with this Kubernetes object.
For production application, I advice to never deploy a database in a StatefulSet if you don't need it. In fact, StatefulSet will come with a lot of problematics that you might not need to manage.
Sometimes, companies rules restrict to host their data on external company storage.
To know if you need to put your database in a StatefulSet, the question I try to answer is:
Should my DB be hosted on premise (for privacy)?
Should my DB be scalable?
Should my DB be updated frequently?
You can find a list of pros/cons on the documentation.
I am building my own webapp which requires a huge database. I want to build and manage my own Mongo database on AWS rather than using Mongo Atlas. Which will be more cost saving? And whether I should go for Mongo Atlas? What will be its advantage over my own database?
There are pros and cons for both approaches:
Running MongoDB on AWS
Pros:
Complete control over how you run the database and how resources are allocated on the server. This could even be together with an application server on the same EC2 instance depending on your traffic and load. This might help with cost saving if your database is huge but isn't likely to see much traffic.
Cons:
You will be responsible for ensuring database availability and applying security patches as and when they are available. You may also have to setup firewalls and protect the EC2 instance and database in other ways that would be trivial to do on a hosted service like Atlas.
Data sharding and clustering can be a real pain to manage by yourself.
Running on Atlas
Pros:
Completely managed service where you don't have to be concerned about performance optimization or scalability. You pay for the services and Mongodb takes care of the rest.
You can focus on building a great application instead of spending your time on administering the database and the EC2 instance on which the database runs.
Cons:
You will be constrained by the options offered by Atlas. For most use cases this should be fine, but if you really want a specific change, it would be difficult to implement it if Mongodb doesn't already support it as a part of Atlas.
Think running your application on EC2 vs buying a server on-premise and running your application on that.
Being a managed service, costs might also be higher if your database does not see much traffic.
HOSTING yourself: You can get one or more AWS ec2 instances(which are VMs) where you can install and run Mongo DB yourself and manage it like you wanted to, making sure that you spin up more instances when the workload becomes large and there are instances up and running at all times to enable high availability.
Cost (high) - Management responsibilities (lots) - Full MongoDB functionality
MongoDB Atlas is a managed service, you don't need to worry about management tasks like scaling of your database and high availability when a single/more instances die... You pay a very low cost for it - this is run by MongoDb themselves on AWS, Azure, Google cloud;
Cost (low) - Management responsibilities (some) - Full MongoDB functionality
Now AWS has its own Mongo compatible database called DocumentDB - this is also a managed database, so you don't need to worry about scalability, high availability etc. This is only available on AWS so super simple and convinient.
Cost (low) - Management responsibilities (minimal) - Limited MongoDB functionality
I'm currently looking into GCP app engine and I was figuring out how I would deploy a very large application with multiple services. I also wanted to use mongodb. GCP docs say that app engine allows dockerfiles and images. What would happen if I used the mongo docker image as a service on app engine? How would it scale it's instances? What will happen to consistency? I'm aware GCP have a third party solution for mongo, but since they allow docker images, what stops me from using it?
App Engine routinely tears down and creates new instances. If your instance is running MongoDB, then all the data stored in that instance will be lost.
This is why Google Cloud offers other, permanent places to store state, like Datastore and CloudSQL. You can also run MongoDb yourself on Google Compute Engine.
What would happen if I used the mongo docker image as a service on app engine?
Flexible App Engine allows you to use docker images to build your own application, as per is mentioned on this document [1]: "App Engine flexible environment instances are Compute Engine virtual machines, which means that you can take advantage of custom libraries, use SSH for debugging, and deploy your own Docker containers."
So there is no problem to use your own docker image in flexible app Engine.
How would it scale it's instances?
Each active version in App Engine must have at least one instance to handle requests, there are two ways to scale the instance in App Engine: automatic and manual.
As per is mentioned on the document[2]:
Automatic scaling creates instances based on request rate, response latencies, and other application metrics. You can specify thresholds for each of these metrics, as well as a minimum number instances to keep running at all times.
Manual scaling specifies the number of instances that continuously run regardless of the load level. This allows tasks such as complex initializations and applications that rely on the state of the memory over time.
The way you can configure these features is through the app.yaml file, I suggest you read this document[3]
What will happen to consistency?
Since App Engine scaling can be configured depending on its load, this allows for good performance in service execution and provides consistency in operations and optimization of resources.
[1] https://cloud.google.com/appengine/docs/flexible#features
[2] https://cloud.google.com/appengine/docs/flexible/go/how-instances-are-managed#instance_scaling
[3] https://cloud.google.com/appengine/docs/flexible/go/configuring-your-app-with-app-yaml
Been working on a web app with a simple database model that only needs CRUD operations, figured MongoDB would be perfect for it. The most important constraints of the project is that it be able to scale from a small amount of users to a large amount. I’ve been looking at the cloud launcher and I’ve noticed that the most popular MongoDB solution advertises a cost of ~$350/mo. This is a surprisingly large amount that makes me consider using cloud sql for my database instead. Is there a better way to deploy MongoDB to GCP that’s more fitted to my use case? I’ve been reading about automatic scaling with kubernetes but I can’t find anything about price. Any and all advice is greatly appreciated
I haven't used mongodb with kubernetes but we do use the cloud launcher solution at work. We use 2 nodes(n1-standard-1) and an arbiter(micro) + 100GB storage on each node which comes up around $100 a month. You would need a replicaset in a production environment so this seems to be a reasonable base cost.
Kubernetes does not provide a lot of advantages over the classic GCE deployment for mongodb compared to a webserver. Setting up a replicaset on kubernetes is a bit more work compared to GCE setup. https://medium.com/google-cloud/mongodb-replica-sets-with-kubernetes-d96606bd9474 and http://blog.kubernetes.io/2017/01/running-mongodb-on-kubernetes-with-statefulsets.html should serve as decent references but wouldn't lower your costs. Scaling nodes would be slightly easier though but does not strictly translate to scaling mongodb.
I have lately been working on a similar solution.
GCP announced that they don't charge for Kubernetes cluster management but only for resources used by it (instances, network ...):
https://cloud.google.com/kubernetes-engine/pricing
In general, databases are high maintenance (data mounts, backups, migrations...), so I would not start running Mongo on Kubernetes right away. You could get there but it will be more complicated than deploying your web app on Kubernetes.
Better to use MongoDB as a service that supports GCP (e.g. MongoDB Atlas), I have done so myself and see a few other companies do that.
If you scale gradually you should be able to control your costs.
The web app itself should be easy to deploy and maintain on Kubernetes.
I m developing an application using SignalR to manage websockets and allow my clients to dialog between each other.
I m planning to host this back-office on an Azure worker role. As my SignalR requests carry data that is most of the time saved in the database, I m wondering if NoSQL's MongoDB instead of the classic SQL Server/Entity Framework couple should be a good approach.
Assuming that my application's data types will be strings for most of them, I think MongoDB will be a reliable and a performant solution, and it will allow me to get rid of Azure's SQL's database costs.
For information, the Azure worker role will be running on a machine with the following hardware: 1 core CPU, 3.5GB RAM and 50GB SSD storage.
Do you think I m on a good start with this architecture ?
Thanks
Do you think I m on a good start with this architecture?
In a word, no.
A user asked a similar question regarding running Redis on Worker Roles - Setting up Redis on Azure cloud service worker role - all of the content on that Q/A is relevant in the MongoDb context.
I'd suggest that you read my answer as it goes into more detail, but as an overview of why this is a bad architectural approach:
You cannot guarantee when a Worker Role will be restarted by the Azure Service Fabric.
In a real-world implementation of Mongo, you would run multiple nodes within a cluster, with a single Worker Role (as you have suggested in your question) this won't be possible.
You will need to manage your MongoDb installation within the Worker Role and they simply aren't designed for this.
If you are really fixed on using Mongo, I would suggest that you use a hosted solution such as MongoLabs (as suggested in earlier answers), or consider hosting it on Azure IaaS VM's.
If you are not fixed on using Mongo, I would sincerely suggest that you look at Azure DocumentDb (also suggested above), Microsoft's Azure NoSQL offering - I have used it in several production systems already and it is certainly a capable NoSQL solution; granted, it may not have all of the features available with MongoDb.
If you are looking at a NoSQL solution for caching of data (i.e. not long term storage), I would suggest you take a look at Azure Redis Cache, which is a very capable Redis offering.
Azure has its own native NoSQL Document database called DocumentDB, have you had a look at it? If I were you I would use DocumentDB unless there are some special requirements that you have that you have not mentioned, but from what little requirement info that you have posted DocumentDB would do just fine. I don't think that it is quite similar to MongoDB in terms of the basic functionality, see this article for a comparison between Azure DocumentDB and MongoDB.