How to debug a timer - stm32

Im having problem setting up the TIM1 in "External Source Mode 1". Im writing to CH1 programmatically but nothing comes out of the timer no matter what settings I try. Is there a way to debug a timer, meaning checking the values at every stage, for example values of TI2FP1, IC1, and then IC1PS. I cant find them while debugging
Edit: If you're familiar these are not the names of the ordinary config registers. Those I know how to find.

The IC1F and IC1PS configuration bits you refer to are found within the TIM1 CCMR1 register. In Truestudio - in the debug perspective, in the SFRs tab - expand TIM1 and then CCMR1_Input. See picture. (That screenshot is for an STM32F302RC, but I believe the TIM1 registers are very similar - if not almost identical - for the STM32F411RE).
TI2FP1, on the other hand, is a signal - not a configuration bit stored in the microcontroller's memory.
If you are using global variables inside the timer ISRs, don't forget to declare them volatile. Otherwise they may not be updating as you expect (at least once you enable optimization).

Related

Is there a process to remap/switch CANTX/CANRX pins STM32H7 FDCAN module?

Testing out an STM32 with an FDCAN module (updated from the older BxCAN peripheral). CAN Classic at 500kbps.
I am running into an issue that when using the default pair of pins (D0/D1 in my case) I get expected behavior, but when switching the pins to the secondary option (B8/B9) using GPIO remapping, I get strange output on the bus.
I tried baud settings and options like protocol exception. Nothing seems to explain where this scope output is coming from.
I'm using the HAL to get this working, so I'm certain I'm not missing any registers on remapping. I've DeInit and ReInit the FDCAN module, started/stopped, etc. There seems to be no documented "process" for remapping pins. The entire FDCAN section of the reference module doesn't have the letters GPIO.
Picture: Yellow is the CANTX 0-3V signal (low is dominant). Purple is the CAN+ signal that idles at 2.5V and pulls past ~3.5V on a dominant. There is nothing else on this line, so I'm not concerned about the sawtoothing. The large initial CAN "SOF" pulse is wrong for timing. The long recessives are nonsense. Then the small value 1 bits are of the correct 2uS pulses for 500kbps. Changing the data put into the FDCAN FIFO makes no difference, the output is always the same.
Solved.
After sending this message, the INIT bits were set in the FDCAN->CCCR register. There were values in the error counters. Indicates an internal error. I was using the HAL as a time saver, but it was over-writting my desired GPIO settings.
I would set the pins B8/B9 to AF mode for FDCAN. Then call FDCAN_DeInit/Init, which via an MSP_INIT callback also calls GPIO Init, but for the original D0/D1 pins. Meaning the B8/B9 I set, and the D0/D1 pins were enabled at the same time.
This is an obvious problem. The HAL is fine for prototyping, but careful because it will try and "help". Undefined behavior at best and I normally wouldn't even post such a dumb mistake.
However... Maybe someone else finds it interesting that whatever the FDCAN state machine is doing here, makes this unique output seen in the scope picture. I initially didn't double check my pin setup, because it looked right, I was getting output on the scope, just the wrong output. I spent much more time going over peripheral settings and data I was feeding to it.

STM32L476RG HAL_UARTEx_RxEventCallback never call

I'm curently working on a projet with a STM32F334 and a STM32L476RG and I have a problem to making them talking with eachother. I'm using a DMA global interrupt like explained here.
I noticed a difference into the 'main.c' of my both projects:
With the F334: MX_DMA_Init() is done before MX_USART2_UART_Init()
With the L476RG: It's the opposite.
I tryed to inverse them and it works but only once... (at start)
So how could I tell the code generator to initialize the DMA before my USART2?
void HAL_UARTEx_RxEventCallback(UART_HandleTypeDef *huart, uint16_t size) {
if (huart->Instance == USART2) {
rs485_send_data(huart, g_rs485Input, size);
HAL_UARTEx_ReceiveToIdle_DMA(&huart2, g_rs485Input, RS485_INPUT_LENGTH);
__HAL_DMA_DISABLE_IT(&hdma_usart2_rx, DMA_IT_HT);
}
}
I has experimented same issue.
I build the same example for NUCLEO-L073RZ but at first, the function HAL_UARTEx_RxEventCallback was never called.
Then I read your question, and I set the order as You say
MX_DMA_Init() before MX_USART2_UART_Init()
(like in the controllerstech example). I reset the uart transmisor and debug again NUCLEO board.Then I had one breakpoint in HAL_UARTEx_RxEventCallback, so the program entered into the function an was stoped in the breakpoint. AS you say, the program enter in the breakpoint once in ever start.
So, I tried deleting this breakpoint in order to do not stop the program in debugging. After that, I watch in Live Expressions MainBuf, RxBuf, isOK, oldPos, newPos and it seems that is working perfectly.
Has you tried without breakpoints? Another way, you can try not debugging, running the program in normal mode and verify turning on one led or writing in other uart port.
Is not the first time that I have experienced irregular running of the program in debug mode.
I had a setup where I was using Lab View to communicate with the Nucleo-STM32F401RE over UART, I was having the same issue as you described.
The solution in my case was to make sure the parity bit was set to none, for some reason if it's set to something else it caused the behavior you're describing.
I have come across the same issue. It took me a while to realise, but in debug mode the HAL_UARTEx_RxEventCallback is never called. Couldn't find a way to fix this, unfortunately. However, my code did run fine when running normally.

STM32F7x6 - Setting readout protection from code without power cycle

I am working on a custom battery powered board with a STM32F746 on which I would like to set the RDP option byte to level 1 from code. Basically, while booting the software checks if the option bytes are set correctly and if not it will reprogram the option bytes to the correct values. This means that any unit shipped to customers is ensured to have the read-out protection set and we don't have to worry about the assembly house forgetting to set it and thus exposing the firmware.
To do this, I follow the procedure in the reference manual:
unlock the option bytes by writing the correct keys to FLASH_OPTKEYR and clearing OPTLOCK
set the desired option values in FLASH_OPTCR
set OPTSTRT in FLASH_OPTCR
This works fine for all option bytes except RDP, which locks the MCU after setting OPTSTRT. As far as I can tell, this is intended behaviour, and requires a reset of the device through a power cycle after which the option byte is set correctly. But since our board is battery powered (soldered connection) this is a bit cumbersome and so my first question is if there exists another way of doing this.
A bit of googling revealed that some STMs can also activate the altered option bytes by transitioning from the STBY state, here is a specific example by ST: https://www.youtube.com/watch?v=f7vs0NwZPFo&ab_channel=STMicroelectronics.
So far I have no luck with this method: when returning from STBY the RDP is not set. The example deals with an STM32L4, does anyone know if this method is supported on the F7?

stm32 NVIC_EnableIRQ() bare metal equivalent?

I'm using the blue pill, and trying to figure out interrupts. I have an interrupt handler:
void __attribute__ ((interrupt ("TIM4_IRQHandler"))) myhandler()
{
puts("hi");
TIM4->EGR |= TIM_EGR_UG; // send an update even to reset timer and apply settings
TIM4->SR &= ~0x01; // clear UIF
TIM4->DIER |= 0x01; // UIE
}
I set up the timer:
RCC_APB1ENR |= RCC_APB1ENR_TIM4EN;
TIM4->PSC=7999;
TIM4->ARR=1000;
TIM4->EGR |= TIM_EGR_UG; // send an update even to reset timer and apply settings
TIM4->EGR |= (TIM_EGR_TG | TIM_EGR_UG);
TIM4->DIER |= 0x01; // UIE enable interrupt
TIM4->CR1 |= TIM_CR1_CEN;
My timer doesn't seem to activate. I don't think I've actually enabled it though. Have I??
I see in lots of example code commands like:
NVIC_EnableIRQ(USART1_IRQn);
What is actually going in NVIC_EnableIRQ()?
I've googled around, but I can't find actual bare-metal code that's doing something similar to mine.
I seem to be missing a crucial step.
Update 2020-09-23 Thanks to the respondents to this question. The trick is to set the bit for the interrupt number in an NVIC_ISER register. As I pointed out below, this doesn't seem to be mentioned in the STM32F101xx reference manual, so I probably would never have been able to figure this out on my own; not that I have any real skill in reading datasheets.
Anyway, oh joy, I managed to get interrupts working! You can see the code here: https://github.com/blippy/rpi/tree/master/stm32/bare/04-timer-interrupt
Even if you go bare metal, you might still want to use the CMSIS header files that provide declarations and inline version of very basic ARM Cortex elements such NVIC_EnableIRQ.
You can find NVIC_EnableIRQ at https://github.com/ARM-software/CMSIS_5/blob/develop/CMSIS/Core/Include/core_cm3.h#L1508
It's defined as:
#define NVIC_EnableIRQ __NVIC_EnableIRQ
__STATIC_INLINE void __NVIC_EnableIRQ(IRQn_Type IRQn)
{
if ((int32_t)(IRQn) >= 0)
{
__COMPILER_BARRIER();
NVIC->ISER[(((uint32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL));
__COMPILER_BARRIER();
}
}
If you want to, you can ignore __COMPILER_BARRIER(). Previous versions didn't use it.
The definition is applicable to Cortex M-3 chips. It's different for other Cortex versions.
With the libraries is still considered bare metal. Without operating system, but anyway, good that you have a desire to learn at this level. Someone has to write the libraries for others.
I was going to do a full example here, (it really takes very little code to do this), but will take from my code for this board that uses timer1.
You obviously need the ARM documentation (technical reference manual for the cortex-m3 and the architectural reference manual for armv7-m) and the data sheet and reference manual for this st part (no need for programmers manual from either company).
You have provided next to no information related to making the part work. You should never dive right into a interrupt, they are advanced topics and you should poll your way as far as possible before finally enabling the interrupt into the core.
I prefer to get a uart working then use that to watch the timer registers when the roll over, count, etc. Then see/confirm the status register fired, learn/confirm how to clear it (sometimes it is just a clear on read).
Then enable it into the NVIC and by polling see the NVIC sees it, and that you can clear it.
You didn't show your vector table this is key to getting your interrupt handler working. Much less the core booting.
08000000 <_start>:
8000000: 20005000
8000004: 080000b9
8000008: 080000bf
800000c: 080000bf
...
80000a0: 080000bf
80000a4: 080000d1
80000a8: 080000bf
...
080000b8 <reset>:
80000b8: f000 f818 bl 80000ec <notmain>
80000bc: e7ff b.n 80000be <hang>
...
080000be <hang>:
80000be: e7fe b.n 80000be <hang>
...
080000d0 <tim1_handler>:
The first word loads the stack pointer, the rest are vectors, the address to the handler orred with one (I'll let you look that up).
In this case the st reference manual shows that interrupt 25 is TIM1_UP at address 0x000000A4. Which mirrors to 0x080000A4, and that is where the handler is in my binary, if yours is not then two things, one you can use VTOR to find an aligned space, sometimes sram or some other flash space that you build for this and point there, but your vector table handler must have the proper pointer or your interrupt handler won't run.
volatile unsigned int counter;
void tim1_handler ( void )
{
counter++;
PUT32(TIM1_SR,0);
}
volatile isn't necessarily the right way to share a variable between interrupt handler and foreground task, it happens to work for me with this compiler/code, you can do the research and even better, examine the compiler output (disassemble the binary) to confirm this isn't a problem.
ra=GET32(RCC_APB2ENR);
ra|=1<<11; //TIM1
PUT32(RCC_APB2ENR,ra);
...
counter=0;
PUT32(TIM1_CR1,0x00001);
PUT32(TIM1_DIER,0x00001);
PUT32(NVIC_ISER0,0x02000000);
for(rc=0;rc<10;)
{
if(counter>=1221)
{
counter=0;
toggle_led();
rc++;
}
}
PUT32(TIM1_CR1,0x00000);
PUT32(TIM1_DIER,0x00000);
A minimal init and runtime for tim1.
Notice that the NVIC_ISER0 is bit 25 that is set to enable interrupt 25 through.
Well before trying this code, I polled the timer status register to see how it works, compare with docs, clear the interrupt per the docs. Then with that knowledge confirmed with the NVIC_ICPR0,1,2 registers that it was interrupt 25. As well as there being no other gates between the peripheral and the NVIC as some chips from some vendors may have.
Then released it through to the core with NVIC_ISER0.
If you don't take these baby steps and perhaps you have already, it only makes the task much worse and take longer (yes, sometimes you get lucky).
TIM4 looks to be interrupt 30, offset/address 0x000000B8, in the vector table. NVIC_ISER0 (0xE000E100) covers the first 32 interrupts so 30 would be in that register. If you disassemble the code you are generating with the library then we can see what is going on, and or look it up in the library source code (as someone already did for you).
And then of course your timer 4 code needs to properly init the timer and cause the interrupt to fire, which I didn't check.
There are examples, you need to just keep looking.
The minimum is
vector in the table
set the bit in the interrupt set enable register
enable the interrupt to leave the peripheral
fire the interrupt
Not necessarily in that order.

Can we edit callback function HAL_UART_TxCpltCallback for our convenience?

I am a newbie to both FreeRTOS and STM32. I want to know how exactly callback function HAL_UART_TxCpltCallback for HAL_UART_Transmit_IT works ?
Can we edit that that callback function for our convenience ?
Thanks in Advance
You call HAL_UART_Transmit_IT to transmit your data in the "interrupt" (non-blocking) mode. This call returns immediately, likely well before your data gets fully trasmitted.
The sequence of events is as follows:
HAL_UART_Transmit_IT stores a pointer and length of the data buffer you provide. It doesn't perform a copy, so your buffer you passed needs to remain valid until callback gets called. For example it cannot be a buffer you'll perform delete [] / free on before callbacks happen or a buffer that's local in a function you're going to return from before a callback call.
It then enables TXE interrupt for this UART, which happens every time the DR (or TDR, depending on STM in use) is empty and can have new data written
At this point interrupt happens immediately. In the IRQ handler (HAL_UART_IRQHandler) a new byte is put in the DR (TDR) register which then gets transmitted - this happens in UART_Transmit_IT.
Once this byte gets transmitted, TXE interrupt gets triggered again and this process repeats until reaching the end of the buffer you've provided.
If any error happens, HAL_UART_ErrorCallback will get called, from IRQ handler
If no errors happened and end of buffer has been reached, HAL_UART_TxCpltCallback is called (from HAL_UART_IRQHandler -> UART_EndTransmit_IT).
On to your second question whether you can edit this callback "for convenience" - I'd say you can do whatever you want, but you'll have to live with the consequences of modifying code what's essentially a library:
Upgrading HAL to newer versions is going to be a nightmare. You'll have to manually re-apply all your changes you've done to that code and test them again. To some extent this can be automated with some form of version control (git / svn) or even patch files, but if the code you've modified gets changed by ST, those patches will likely not apply anymore and you'll have to do it all by hand again. This may require re-discovering how the implementation changed and doing all your work from scratch.
Nobody is going to be able to help you as your library code no longer matches code that everyone else has. If you introduced new bugs by modifying library code, no one will be able to reproduce them. Even if you provided your modifications, I honestly doubt many here will bother to apply your changes and test them in practice.
If I was to express my personal opinion it'd be this: if you think there's bugs in the HAL code - fix them locally and report them to ST. Once they're fixed in future update, fully overwrite your HAL modifications with updated official release. If you think HAL code lacks functionality or flexibility for your needs, you have two options here:
Suggest your changes to ST. You have to keep in mind that HAL aims to serve "general purpose" needs.
Just don't use HAL for this specific peripheral. This "mixed" approach is exactly what I do personally. In some cases functionality provided by HAL for given peripheral is "good enough" to serve my needs (in my case one example is SPI where I fully rely on HAL) while in some other cases - such as UART - I use HAL only for initialization, while handling transmission myself. Even when you decide not to use HAL functions, it can still provide some value - you can for example copy their IRQ handler to your code and call your functions instead. That way you at least skip some parts in development.