I have PySpark code that effectively groups up rows numerically, and increments when a certain condition is met. I'm having trouble figuring out how to transform this code, efficiently, into one that can be applied to groups.
Take this sample dataframe df
df = sqlContext.createDataFrame(
[
(33, [], '2017-01-01'),
(33, ['apple', 'orange'], '2017-01-02'),
(33, [], '2017-01-03'),
(33, ['banana'], '2017-01-04')
],
('ID', 'X', 'date')
)
This code achieves what I want for this sample df, which is to order by date and to create groups ('grp') that increment when the size column goes back to 0.
df \
.withColumn('size', size(col('X'))) \
.withColumn(
"grp",
sum((col('size') == 0).cast("int")).over(Window.orderBy('date'))
).show()
This is partly based on Pyspark - Cumulative sum with reset condition
Now what I am trying to do is apply the same approach to a dataframe that has multiple IDs - achieving a result that looks like
df2 = sqlContext.createDataFrame(
[
(33, [], '2017-01-01', 0, 1),
(33, ['apple', 'orange'], '2017-01-02', 2, 1),
(33, [], '2017-01-03', 0, 2),
(33, ['banana'], '2017-01-04', 1, 2),
(55, ['coffee'], '2017-01-01', 1, 1),
(55, [], '2017-01-03', 0, 2)
],
('ID', 'X', 'date', 'size', 'group')
)
edit for clarity
1) For the first date of each ID - the group should be 1 - regardless of what shows up in any other column.
2) However, for each subsequent date, I need to check the size column. If the size column is 0, then I increment the group number. If it is any non-zero, positive integer, then I continue the previous group number.
I've seen a few way to handle this in pandas, but I'm having difficulty understanding the applications in pyspark and the ways in which grouped data is different in pandas vs spark (e.g. do I need to use something called UADFs?)
Create a column zero_or_first by checking whether the size is zero or the row is the first row. Then sum.
df2 = sqlContext.createDataFrame(
[
(33, [], '2017-01-01', 0, 1),
(33, ['apple', 'orange'], '2017-01-02', 2, 1),
(33, [], '2017-01-03', 0, 2),
(33, ['banana'], '2017-01-04', 1, 2),
(55, ['coffee'], '2017-01-01', 1, 1),
(55, [], '2017-01-03', 0, 2),
(55, ['banana'], '2017-01-01', 1, 1)
],
('ID', 'X', 'date', 'size', 'group')
)
w = Window.partitionBy('ID').orderBy('date')
df2 = df2.withColumn('row', F.row_number().over(w))
df2 = df2.withColumn('zero_or_first', F.when((F.col('size')==0)|(F.col('row')==1), 1).otherwise(0))
df2 = df2.withColumn('grp', F.sum('zero_or_first').over(w))
df2.orderBy('ID').show()
Here' the output. You can see that column group == grp. Where group is the expected results.
+---+---------------+----------+----+-----+---+-------------+---+
| ID| X| date|size|group|row|zero_or_first|grp|
+---+---------------+----------+----+-----+---+-------------+---+
| 33| []|2017-01-01| 0| 1| 1| 1| 1|
| 33| [banana]|2017-01-04| 1| 2| 4| 0| 2|
| 33|[apple, orange]|2017-01-02| 2| 1| 2| 0| 1|
| 33| []|2017-01-03| 0| 2| 3| 1| 2|
| 55| [coffee]|2017-01-01| 1| 1| 1| 1| 1|
| 55| [banana]|2017-01-01| 1| 1| 2| 0| 1|
| 55| []|2017-01-03| 0| 2| 3| 1| 2|
+---+---------------+----------+----+-----+---+-------------+---+
I added a window function, and created an index within each ID. Then I expanded the conditional statement to also reference that index. The following seems to produce my desired output dataframe - but I am interested in knowing if there is a more efficient way to do this.
window = Window.partitionBy('ID').orderBy('date')
df \
.withColumn('size', size(col('X'))) \
.withColumn('index', rank().over(window).alias('index')) \
.withColumn(
"grp",
sum(((col('size') == 0) | (col('index') == 1)).cast("int")).over(window)
).show()
which yields
+---+---------------+----------+----+-----+---+
| ID| X| date|size|index|grp|
+---+---------------+----------+----+-----+---+
| 33| []|2017-01-01| 0| 1| 1|
| 33|[apple, orange]|2017-01-02| 2| 2| 1|
| 33| []|2017-01-03| 0| 3| 2|
| 33| [banana]|2017-01-04| 1| 4| 2|
| 55| [coffee]|2017-01-01| 1| 1| 1|
| 55| []|2017-01-03| 0| 2| 2|
+---+---------------+----------+----+-----+---+
Related
I'm pretty new to functional programming and pyspark and I currently struggle to condense the data I want from my source data
Let's say I have two tables as DataFrames:
# if not already created automatically, instantiate Sparkcontext
spark = SparkSession.builder.getOrCreate()
columns = ['Id', 'JoinId', 'Name']
vals = [(1, 11, 'FirstName'), (2, 12, 'SecondName'), (3, 13, 'ThirdName')]
persons = spark.createDataFrame(vals,columns)
columns = ['Id', 'JoinId', 'Specification', 'Date', 'Destination']
vals = [(1, 10, 'I', '20051205', 'New York City'), (2, 11, 'I', '19991112', 'Berlin'), (3, 11, 'O', '20030101', 'Madrid'), (4, 13, 'I', '20200113', 'Paris'), (5, 11, 'U', '20070806', 'Lissabon')]
movements = spark.createDataFrame(vals,columns)
persons.show()
+---+------+----------+
| Id|JoinId| Name|
+---+------+----------+
| 1| 11| FirstName|
| 2| 12|SecondName|
| 3| 13| ThirdName|
+---+------+----------+
movements.show()
+---+------+-------------+--------+-------------+
| Id|JoinId|Specification| Date| Destination|
+---+------+-------------+--------+-------------+
| 1| 10| I|20051205|New York City|
| 2| 11| I|19991112| Berlin|
| 3| 11| O|20030101| Madrid|
| 4| 13| I|20200113| Paris|
| 5| 11| U|20070806| Lissabon|
+---+------+-------------+--------+-------------+
What I want to create is
+--------+----------+---------+---------+-----------+
|PersonId|PersonName| IDate| ODate|Destination|
| 1| FirstName| 19991112| 20030101| Berlin|
| 3| ThirdName| 20200113| | Paris|
+--------+----------+---------+---------+-----------+
The rules would be:
PersonId is the Id of the Person
IDate is the Date saved in the Movements DataFrame where Specification is I
ODate the Date saved in the Movements DataFrame where Specification is O
The Destination is the Destination of the joined entry where the Specification was I
I already joined the dataframes on JoinId
joined = persons.withColumnRenamed('JoinId', 'P_JoinId').join(movements, col('P_JoinId') == movements.JoinId, how='inner')
joined.show()
+---+--------+---------+---+------+-------------+--------+-----------+
| Id|P_JoinId| Name| Id|JoinId|Specification| Date|Destination|
+---+--------+---------+---+------+-------------+--------+-----------+
| 1| 11|FirstName| 2| 11| I|19991112| Berlin|
| 1| 11|FirstName| 3| 11| O|20030101| Madrid|
| 1| 11|FirstName| 5| 11| U|20070806| Lissabon|
| 3| 13|ThirdName| 4| 13| I|20200113| Paris|
+---+--------+---------+---+------+-------------+--------+-----------+
But I'm struggling to select data from multiple rows and put them with the given rules into a single row...
Thank you for your help
Note : I have renamed the id in movements to Id_Movements,to avoid confusion in grouping later.
You can pivot your joined data based on the specification and do some aggregation on date and destination. Then you will get the date and destination specification wise.
import pyspark.sql.functions as F
persons =sqlContext.createDataFrame( [(1, 11, 'FirstName'), (2, 12, 'SecondName'), (3, 13, 'ThirdName')],schema=['Id', 'JoinId', 'Name'])
movements=sqlContext.createDataFrame([(1, 10, 'I', '20051205', 'New York City'), (2, 11, 'I', '19991112', 'Berlin'), (3, 11, 'O', '20030101', 'Madrid'), (4, 13, 'I', '20200113', 'Paris'), (5, 11, 'U', '20070806', 'Lissabon')],schema=['Id_movements', 'JoinId', 'Specification', 'Date', 'Destination'])
df_joined = persons.withColumnRenamed('JoinId', 'P_JoinId').join(movements, F.col('P_JoinId') == movements.JoinId, how='inner')
#%%
df_pivot = df_joined.groupby(['Id','Name']).pivot('Specification').agg(F.min('Date').alias("date"),F.min('Destination').alias('destination'))
Here I have chosen the min aggregation, but you can choose the one as per your need and drop the irrelevant columns
results :
+---+---------+--------+-------------+--------+-------------+--------+-------------+
| Id| Name| I_date|I_destination| O_date|O_destination| U_date|U_destination|
+---+---------+--------+-------------+--------+-------------+--------+-------------+
| 1|FirstName|19991112| Berlin|20030101| Madrid|20070806| Lissabon|
| 3|ThirdName|20200113| Paris| null| null| null| null|
+---+---------+--------+-------------+--------+-------------+--------+-------------+
I have 2 dataframes
val df1 = Seq((1, "1","6"), (2, "10","8"), (3, "6","4")).toDF("id", "value1","value2")
val df2 = Seq((1, "1","6"), (2, "5","4"), (4, "3","1")).toDF("id", "value1","value2")
and i want to find the difference of column level
output should look like
id,value1_df1,value1_df2,diff_value1,value2_df1,value_df2,diff_value2
1, 1 ,1 , 0 , 6 ,6 ,0
2, 10 ,5 , 5 , 8 ,4 ,4
3, 6 ,3 , 1 , 4 ,1 ,3
like wise i have 100's of column and want to compute difference between same column in 2 dataframes columns are dynamic
Maybe this will help:
val spark = SparkSession.builder.appName("Test").master("local[*]").getOrCreate();
import spark.implicits._
var df1 = Seq((1, "1", "6"), (2, "10", "8"), (3, "6", "4")).toDF("id", "value1", "value2")
var df2 = Seq((1, "1", "6"), (2, "5", "4"), (3, "3", "1")).toDF("id", "value1", "value2")
df1.columns.foreach(column => {
df1 = df1.withColumn(column, df1.col(column).cast(IntegerType))
})
df2.columns.foreach(column => {
df2 = df2.withColumn(column, df2.col(column).cast(IntegerType))
})
df1 = df1.withColumnRenamed("id", "df1_id")
df2 = df2.withColumnRenamed("id", "df2_id")
df1.show()
df2.show()
so till now you have two dataframes with value_x,value_y,value_z and going on ...
df1:
+------+------+------+
|df1_id|value1|value2|
+------+------+------+
| 1| 1| 6|
| 2| 10| 8|
| 3| 6| 4|
+------+------+------+
df2:
+------+------+------+
|df2_id|value1|value2|
+------+------+------+
| 1| 1| 6|
| 2| 5| 4|
| 3| 3| 1|
+------+------+------+
Now we are gonna join them base on id:
var df3 = df1.alias("df1").join(df2.alias("df2"), $"df1.df1_id" === $"df2.df2_id")
and last, we gonna take all columns on df1/df2 (* Its important that they will have the same columns) - without the id, and create a new column of the diff:
df1.columns.tail.foreach(col => {
val new_col_name = s"${col}-diff"
val df_a_col = s"df1.${col}"
val df_b_col = s"df2.${col}"
df3 = df3.withColumn(new_col_name, df3.col(df_a_col) - df3.col(df_b_col))
})
df3.show()
Result:
+------+------+------+------+------+------+-----------+-----------+
|df1_id|value1|value2|df2_id|value1|value2|value1-diff|value2-diff|
+------+------+------+------+------+------+-----------+-----------+
| 1| 1| 6| 1| 1| 6| 0| 0|
| 2| 10| 8| 2| 5| 4| 5| 4|
| 3| 6| 4| 3| 3| 1| 3| 3|
+------+------+------+------+------+------+-----------+-----------+
This is the result, and it`s dynamic so you can add valueX you want.
I have the following columns in DataFrame df:
c_id p_id type values
278230 57371100 11 1
278230 57371100 12 1
...
I execute the following code and expect to see columns 11_total and 12_total:
df
.groupBy($"c_id",$"p_id")
.pivot("type")
.agg(sum("values") as "total")
.na.fill(0)
.show()
Instead, I get columns 11 and 12:
+-----------+----------+---+---+
| c_id| p_id| 11| 12|
+-----------+----------+---+---+
| 278230| 57371100| 0| 1|
| 337790| 72031970| 3| 0|
| 320710| 71904400| 0| 1|
Why?
That's because Spark appends aliases to the pivot column values only when there are multiple aggregations for clarity:
val df = Seq(
(278230, 57371100, 11, 1),
(278230, 57371100, 12, 2),
(337790, 72031970, 11, 1),
(337790, 72031970, 11, 2),
(337790, 72031970, 12, 3)
)toDF("c_id", "p_id", "type", "values")
df.groupBy($"c_id", $"p_id").pivot("type").
agg(sum("values").as("total")).
show
// +------+--------+---+---+
// | c_id| p_id| 11| 12|
// +------+--------+---+---+
// |337790|72031970| 3| 3|
// |278230|57371100| 1| 2|
// +------+--------+---+---+
df.groupBy($"c_id", $"p_id").pivot("type").
agg(sum("values").as("total"), max("values").as("max")).
show
// +------+--------+--------+------+--------+------+
// | c_id| p_id|11_total|11_max|12_total|12_max|
// +------+--------+--------+------+--------+------+
// |337790|72031970| 3| 2| 3| 3|
// |278230|57371100| 1| 1| 2| 2|
// +------+--------+--------+------+--------+------+
I have the following DataFrame df:
val df = Seq(
(1, 0, 1, 0, 0), (1, 4, 1, 0, 4), (2, 2, 1, 2, 2),
(4, 3, 1, 4, 4), (4, 5, 1, 4, 4)
).toDF("from", "to", "attr", "type_from", "type_to")
+-----+-----+----+---------------+---------------+
|from |to |attr|type_from |type_to |
+-----+-----+----+---------------+---------------+
| 1| 0| 1| 0| 0|
| 1| 4| 1| 0| 4|
| 2| 2| 1| 2| 2|
| 4| 3| 1| 4| 4|
| 4| 5| 1| 4| 4|
+-----+-----+----+---------------+---------------+
I want to count the number of ingoing and outgoing links for each node only when the type of from node is the same as the type of to node (i.e. the values of type_from and type_to).
The cases when to and from are equal should be excluded.
This is how I calculate the number of outgoing links based on this answer proposed by user8371915.
df
.where($"type_from" === $"type_to" && $"from" =!= $"to")
.groupBy($"from" as "nodeId", $"type_from" as "type")
.agg(count("*") as "numLinks")
.na.fill(0)
.show()
Of course, I can repeat the same calculation for the incoming links and then join the results. But is there any shorter solution?
df2
.where($"type_from" === $"type_to" && $"from" =!= $"to")
.groupBy($"to" as "nodeId", $"type_to" as "type")
.agg(count("*") as "numLinks")
.na.fill(0)
.show()
val df_result = df.join(df2, Seq("nodeId", "type"), "rightouter")
I have a very big table in the following stucture:
user, product, action
user1, productA, actionA
user1, productA, actionB
user1, productA, actionB
user2, productF, actionA
user3, productZ, actionC
I would like to transpose it to the following:
Stage1: retrieve specific products X actions
user, productA_actionA, productB_actionA, …, productA_actionB, productB_actionB…
user1, 1, 0, ..., 0,0, ...
user1, 0, 0, ..., 1,0, ...
user1, 0, 0, ..., 1,0, ...
user2, 0, 0, ..., 0,0, ...
I have the array that contains the specific combinations:
[(productA,actionA) ,(productB,actionA) ,… ,(productA,actionB) ,(productB,actionB) …]
Stage2: group my users, and summing their products and actions
user, productA_actionA, productB_actionA, …, productA_actionB, productB_actionB…
user1, 1, 0, ..., **2**,0, ...
user2, 0, 0, ..., 0,0, ...
I tried using the withColumn function for each feature but this takes forever:
for ( (productID,productAction) <- productsCombination ) {
newTable = newTable.withColumn("Product_"+productID+"_"+productAction, when(col("product_action_id") === productAction and col("product_id") === productID, $"product_count").otherwise(0))
Here's an example shows what I want to do :
Any advice?
I wasn't able to understand the question properly but I considered your screenshot and this is based on the output of your screenshot.
As T. Gawęda said, you should use Pivot. Note that pivot is only available with Spark 1.6+
Considering this is your source DataFrame
scala> df.show()
+-----+-------+---------------+
| User|Product| Action|
+-----+-------+---------------+
|user1| A| Viewed|
|user1| A| Viewed|
|user1| A| Viewed|
|user1| C| AddToCart|
|user1| A|RemovedFromCart|
|user2| B| Viewed|
|user2| B| Viewed|
|user3| A| Viewed|
|user3| A| AddToCart|
|user4| B| AddToCart|
|user5| A| Viewed|
+-----+-------+---------------+
Now since you need to Pivot on two columns, you can concat them into one using the concat_ws function provided by Apache Spark and then Pivot the concatenated column, perform a groupBy on Users and use count on Products as the aggregate function.
df.withColumn("combined", concat_ws("_", $"Product", $"Action"))
.groupBy("User")
.pivot("combined")
.agg(count($"Product")).show()
+-----+-----------+-----------------+--------+-----------+--------+-----------+
| User|A_AddToCart|A_RemovedFromCart|A_Viewed|B_AddToCart|B_Viewed|C_AddToCart|
+-----+-----------+-----------------+--------+-----------+--------+-----------+
|user1| 0| 1| 3| 0| 0| 1|
|user2| 0| 0| 0| 0| 2| 0|
|user3| 1| 0| 1| 0| 0| 0|
|user4| 0| 0| 0| 1| 0| 0|
|user5| 0| 0| 1| 0| 0| 0|
+-----+-----------+-----------------+--------+-----------+--------+-----------+