After reading thru Kubernetes documents like this, deployment , service and this I still do not have a clear idea what the purpose of service is.
It seems that the service is used for 2 purposes:
expose the deployment to the outside world (e.g using LoadBalancer),
expose one deployment to another deployment (e.g. using ClusterIP services).
Is this the case? And what about the Ingress?
------ update ------
Connect a Front End to a Back End Using a Service is a good example of the service working with the deployment.
Service
A deployment consists of one or more pods and replicas of pods. Let's say, we have 3 replicas of pods running in a deployment. Now let's assume there is no service. How does other pods in the cluster access these pods? Through IP addresses of these pods. What happens if we say one of the pods goes down. Kunernetes bring up another pod. Now the IP address list of these pods changes and all the other pods need to keep track of the same. The same is the case when there is auto scaling enabled. The number of the pods increases or decreases based on demand. To avoid this problem services come into play. Thus services are basically programs that manages the list of the pods ip for a deployment.
And yes, also regarding the uses that you posted in the question.
Ingress
Ingress is something that is used for providing a single point of entry for the various services in your cluster. Let's take a simple scenario. In your cluster there are two services. One for the web app and another for documentation service. If you are using services alone and not ingress, you need to maintain two load balancers. This might cost more as well. To avoid this, ingress when defined, sits on top of services and routes to services based on the rules and path defined in the ingress.
Related
In kubernetes, is it somehow possible to "assign" multiple headless services to single statefulset, or achieve behaviour describe below some other way?
Use-case:
We've got statefulset, let's call it: set. It has 3 pod, and headless service called set-headless.
It is possible to access pods, using following dns names:
set-0.set-headless.namespace.svc.cluster.local
set-1.set-headless.namespace.svc.cluster.local
set-2.set-headless.namespace.svc.cluster.local
For some reasons, we would like to change this endpoints, to i.e. contain some more information in headless service name - set-uswest1-headles.
To accomplish this change without downtime, it would be perfect, to have two headless services running at the same time, so pods could be accessible by following dns names:
set-0.set-headless.namespace.svc.cluster.local
set-1.set-headless.namespace.svc.cluster.local
set-2.set-headless.namespace.svc.cluster.local
set-0.set-uswest1-headless.namespace.svc.cluster.local
set-1.set-uswest1-headless.namespace.svc.cluster.local
set-2.set-uswest1-headless.namespace.svc.cluster.local
Is it possible at all? Can this be achieved some other way (not using headless servic
Yes, it all depends on the labels applied to each statefulSet/Pod that will add that pod to the headless service endpoints.
You can have one headless service to route to all the pods, and 1 for each set of different set of pods
EDIT: For your use case, in order to not have downtime, its important that both of the headless services has the same labels.
Also, its important to remember that headless services are for pods in the same statefulset to communicate with each other and services are used for pods to be reached from other services. So in case you need the pods to be reached by other services/ingress you need the same labels applied to both services and satefulsets for no downtime.
Or you could explain what kind of service is this and i can help you with specific actions for that kind of service
I'm a beginner in Kubernetes and I have a situation as following: I have two differents Pods: PodA and PodB. Firstly, I want to expose PodA to the outside world, so I create a Service (type NodePort or LoadBalancer) for PodA, which is not difficult to understand for me.
Then I want PodA communicate to PodB, and after several hours googling, I found the answer is that I also need to create a Service (type ClusterIP if I want to keep PodB only visible inside the cluster) for PodB, and if I do so, I can let PodA and PodB comminucate to each other. But the problem is I also found this article. According to this webpage, they say that the communication between pods on the same node can be done via cbr0, a Network Bridge, or the communication between pods on different nodes can be done via a route table of the cluster, and they don't mention anything to the Service object (which means we don't need Service object ???).
In fact, I also read the documents of K8s and I found in the Cluster Networking
Cluster Networking
...
2. Pod-to-Pod communications: this is the primary focus of this document.
...
where they also focus on to the Pod-to-Pod communications, but there is no stuff relevant to the Service object.
So, I'm really confusing right now and my question is: Could you please explain to me the connection between these stuff in the article and the Service object? The Service object is a high-level abstract of the cbr0 and route table? And in the end, how can the Pods can communicate to each other?
If I misunderstand something, please, point it out for me, I really appreciate that.
Thank you guys !!!
Motivation behind using a service in a Kubernetes cluster.
Kubernetes Pods are mortal. They are born and when they die, they are not resurrected. If you use a Deployment to run your app, it can create and destroy Pods dynamically.
Each Pod gets its own IP address, however in a Deployment, the set of Pods running in one moment in time could be different from the set of Pods running that application a moment later.
This leads to a problem: if some set of Pods (call them “backends”) provides functionality to other Pods (call them “frontends”) inside your cluster, how do the frontends find out and keep track of which IP address to connect to, so that the frontend can use the backend part of the workload?
That being said, a service is handy when your deployments (podA and podB) are dynamically managed.
Your PodA can always communicate with PodB if it knows the address or the DNS name of PodB. In a cluster environment, there may be multiple replicas of PodB, or an instance of PodB may die and be replaced by another instance with a different address and different name. A Service is an abstraction to deal with this situation. If you use a Service to expose your PodB, then all pods in the cluster can talk to an instance of PodB using that service, which has a fixed name and fixed address no matter how many instances of PodB exists and what their addresses are.
First, I read it as you are dealing with two applications, e.g. ApplicationA and ApplicationB. Don't use the Pod abstraction when you reason about your architecture. On Kubernetes, you are dealing with a distributed system, and it is designed so that you should have multiple instances of your Application, e.g. for High Availability. Each instance of your application is a Pod.
Deploy your applications ApplicationA and ApplicationB as a Deployment resource. Then it is easy do do rolling upgrades without downtime, and Kubernetes will restart any instance of your application if it crash.
For every Deployment or for you, application, create one Service resource, (e.g. ServiceA and ServiceB). When you communicate from ApplicationA to another application, use the Service, e.g. ServiceB. The service will load balance your requests to the instances of the other application, and you can upgrade your Deployment without downtime.
1.Cluster networking : As the name suggests, all the pods deployed in the cluster will be connected by implementing any kubernetes network model like DANM, flannel
Check this link to see how to create a cluster network.
Creating cluster network
With the CNI installed (by implementing cluster network), every pod will get an IP.
2.Service objects created with type ClusterIP, points to the this IPs (via endpoint) created internally to communicate.
Answering your question, Yes, The Service object is a high-level abstract of the cbr0 and route table.
You can use service object to communicate between pods.
You can also implement service mesh like envoy / Istio if the network is complex.
I did read up on StatefulSets which I want to use for some stateful applications, and was wondering about two things?
1) Do I need to put a service in front? Or do I just dns query the single instances, and they do have a static ip like with a service by default, disregarding what pod runs behind?
2) How does a statefulset behave when a given pod X is down? I suppose with my theory of it having a kind of "internal" service, it will just hold back any requests done while the pod behind the IP is down until a new one is there?
1) Do I need to put a service in front? Or do I just dns query the
single instances, and they do have a static ip like with a service by
default, disregarding what pod runs behind?
StatefulSets currently require a Headless Service to be responsible for the network identity of the Pods. You are responsible for creating this Service.
2) How does a statefulset behave when a given pod X is down? I suppose
with my theory of it having a kind of "internal" service, it will just
hold back any requests done while the pod behind the IP is down until
a new one is there?
StatefulSet ensures that, at any time, there is at most one Pod with a given identity running in a cluster. This is referred to as at most one semantics provided by a StatefulSet.The StatefulSet also recreates Pods if they’re deleted, similar to what a ReplicaSet does for stateless Pods.
I am new to the Kubernetes, and I'm trying to understand that how can I apply it for my use-case scenario.
I managed to install a 3-node cluster on VMs within the same network. Searching about K8S's concepts and reading related articles, still I couldn't find answer for my below question. Please let me know if you have knowledge on this:
I've noticed that internal DNS service of K8S applies on the pods and this way services can find each other with hostnames instead of IPs.
Is this applicable for communication between pods of different nodes or this is only within the services inside a single node? (In other words, do we have a dns service on the node level in the K8S, or its only about pods?)
The reason for this question is the scenario that I have in mind:
I need to deploy a micro-service application (written in Java) with K8S. I made docker images from each service in my application and its working locally. Currently, these services are connected via pre-defined IP addresses.
Is there a way to run each of these services within a separate K8S node and use from its DNS service to connect the nodes without pre-defining IPs?
A service serves as an internal endpoint and (depending on the configuration) load balancer to one or several pods behind it. All communication typically is done between services, not between pods. Pods run on nodes, services don't really run anything, they are just routing traffic to the appropriate pods.
A service is a cluster-wide configuration that does not depend on a node, thus you can use a service name in the whole cluster, completely independent from where a pod is located.
So yes, your use case of running pods on different nodes and communicate between service names is a typical setup.
I'm new to K8s, so still trying to get my head around things. I've been looking at deployments and can appreciate how useful they will be. However, I don't understand why they don't support services (only replica sets and pods).
Why is this? Does this mean that services would typically be deployed outside of a deployment?
To answer your question, Kubernetes deployments are used for managing stateless services running in the cluster instead of StatefulSets which are built for the stateful application run-time. Actually, with deployments you can describe the update strategy and road map for all underlying objects that have to be created during implementation.Therefore, we can distinguish separate specification fields for some objects determination, like needful replica number of Pods, template for Pod by describing a list of containers that should be in the Pod, etc.
However, as #P Ekambaram already mention in his answer, Services represent abstraction layer of network communication model inside Kubernetes cluster, and they declare a way to access Pods within a cluster via corresponded Endpoints. Services are separated from deployment object manifest specification, because of their mission to dynamically provide specific network behavior for the nested Pods without affecting or restarting them in case of any communication modification via appropriate Service Types.
Yes, services should be deployed as separate objects. Note that deployment is used to upgrade or rollback the image and works above ReplicaSet
Kubernetes Pods are mortal. They are born and when they die, they are not resurrected. ReplicaSets in particular create and destroy Pods dynamically (e.g. when scaling out or in). While each Pod gets its own IP address, even those IP addresses cannot be relied upon to be stable over time. This leads to a problem: if some set of Pods (let’s call them backends) provides functionality to other Pods (let’s call them frontends) inside the Kubernetes cluster, how do those frontends find out and keep track of which backends are in that set?
Services.come to the rescue.
A Kubernetes Service is an abstraction which defines a logical set of Pods and a policy by which to access them. The set of Pods targeted by a Service is (usually) determined by a Label Selector
Something I've just learnt that is somewhat related to my question: multiple K8s objects can be included in the same yaml file, separate by ---. Something like:
apiVersion: v1
kind: Deployment
# other stuff here
---
apiVersion: v1
kind: Service
# other stuff here
i think it intends to decoupled and fine-grained.