I am trying to implement a scala + spark solution to streaming a word count information from new values from a HDFS folder, like this:
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
import StreamingContext._
import org.apache.hadoop.conf._
import org.apache.hadoop.fs._
object HdfsWordCount {
def main(args: Array[String]) {
if (args.length < 1) {
System.err.println("Usage: HdfsWordCount <directory>")
System.exit(1)
}
val sparkConf = new SparkConf().setAppName("HdfsWordCount")
// Create the context
val ssc = new StreamingContext(sparkConf, Seconds(2))
// Create the FileInputDStream on the directory and use the
// stream to count words in new files created
val lines = ssc.textFileStream(args(0))
val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)
wordCounts.print()
ssc.start()
ssc.awaitTermination()
}
}
I tried with spark-shell running HdfsWordCount.main(Array('hdfs:///user/cloudera/sparkStreaming/'))
and it just give a | and leaving me to type. Am I doing something wrong?
Related
I working on simple SparkStreaming wordcount example to to count the number of words in text data received from a data server listening on a TCP socket.
I would like to check if the batch from streaming source is empty or not before I save the content of every transformation to a text files. Currently, I am using Spark Shell. This is my code
I have tried this code, and it works fine without checking if the batch is empty or not:
import org.apache.spark.{SparkContext, SparkConf}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.storage.StorageLevel
import org.apache.log4j.{Level, Logger}
Logger.getRootLogger.setLevel(Level.WARN)
val ssc = new StreamingContext(sc, Seconds(2))
val lines = ssc.socketTextStream("localhost", 9999, StorageLevel.MEMORY_AND_DISK_SER)
lines.saveAsTextFiles("/stream_test/testLine.txt")
val words = lines.flatMap(_.split(" "))
words.saveAsTextFiles("/stream_test/testWords.txt")
val pairs = words.map((_, 1))
pairs.saveAsTextFiles("/stream_test/testPairs.txt")
val wordCounts = pairs.reduceByKey(_ + _)
wordCounts.saveAsTextFiles("/stream_test/testWordsCounts.txt")
wordCounts.print()
ssc.start()
I have tried to use foreachRDD but it gives me an error error: value saveAsTextFiles is not a member of org.apache.spark.rdd.RDD[String]
This is my code
import org.apache.spark.{SparkContext, SparkConf}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.storage.StorageLevel
import org.apache.log4j.{Level, Logger}
Logger.getRootLogger.setLevel(Level.WARN)
val ssc = new StreamingContext(sc, Seconds(3))
val lines = ssc.socketTextStream("localhost", 9999, StorageLevel.MEMORY_AND_DISK_SER)
lines.foreachRDD(rdd => {
if(!rdd.partitions.isEmpty)
{
lines.saveAsTextFiles("/stream_test/testLine.txt")
val words = lines.flatMap(_.split(" "))
words.saveAsTextFiles("/stream_test/testWords.txt")
val pairs = words.map((_, 1))
pairs.saveAsTextFiles("/stream_test/testPairs.txt")
val wordCounts = pairs.reduceByKey(_ + _)
wordCounts.saveAsTextFiles("/stream_test/testWordsCounts.txt")
wordCounts.print()
}
})
ssc.start()
I need to to check if the batch from streaming source is empty or not before I save the content text files. I appreciate your help
I used to do it using following code. I will loop each rdd in stream and then use rdd.count() to judge if a rdd is empty. if all rdds is empty, nothing happened, hope it can help you.
kafkaStream.foreachRDD(rdd -> {
if(rdd.count() > 0) {
// do something
}
})
You can try the below code snippet to check your streaming batches are empty or not:
if(!rdd.partitions.isEmpty)
rdd.saveAsTextFile(outputDir)
I have many text file in local directory. Spark Program to read all the files and store it into database. For the moment, trying to read the files using text file stream not working.
import org.apache.spark._
import org.apache.spark.streaming._
import org.apache.spark.streaming.dstream.DStream
/**
* Main Program
*/
object SparkMain extends App {
// Create a SparkContext to initialize Spark
val sparkConf: SparkConf =
new SparkConf()
.setMaster("local")
.setAppName("TestProgram")
// Create a spark streaming context with windows period 2 sec
val ssc: StreamingContext =
new StreamingContext(sparkConf, Seconds(2))
// Create text file stream
val sourceDir: String = "D:\\tmpDir"
val stream: DStream[String] = ssc.textFileStream(sourceDir)
case class TextLine(line: String)
val lineRdd: DStream[TextLine] = stream.map(TextLine)
lineRdd.foreachRDD(rdd => {
rdd.foreach(println)
})
// Start the computation
ssc.start()
// Wait for the computation to terminate
ssc.awaitTermination()
}
Input:
//1.txt
Hello World
Nothing print when stream the streaming. What is wrong in it?
TextFileStreaming does not read the file that is already present in the directory. Start the program and create a new file or move the file from any other directory. The following program is simple word count for text file streaming
val sourceDir: String = "path to streaming directory"
val stream: DStream[String] = streamingContext.textFileStream(sourceDir)
case class TextLine(line: String)
val lineRdd: DStream[TextLine] = stream.map(TextLine)
lineRdd.foreachRDD(rdd => {
val words = rdd.flatMap(rdd => rdd.line.split(" "))
val pairs = words.map(word => (word, 1))
val wordCounts = pairs.reduceByKey(_ + _)
println("=====================")
wordCounts.foreach(println)
println("=====================" + rdd.count())
})
The ouput should be something like this
+++++++++++++++++++++++
=====================0
+++++++++++++++++++++++
(are,1)
(you,1)
(how,1)
(hello,1)
(doing,1)
=====================5
+++++++++++++++++++++++
=====================0
I hope this helps!
I'm working with Spark Streaming using Scala. I need to read a .csv file dinamically from HDFS directory with this line:
val lines = ssc.textFileStream("/user/root/")
I use the following command line to put the file into HDFS:
hdfs dfs -put ./head40k.csv
It works fine with a relatively small file.
When I try with a larger one, I get this error:
org.apache.hadoop.ipc.RemoteException(java.io.FileNotFoundException): File does not exist: /user/root/head800k.csv._COPYING
I can understand why, but I don't know how to fix it. I've tried this solution too:
hdfs dfs -put ./head800k.csv /user
hdfs dfs -mv /usr/head800k.csv /user/root
but my program doesn't read the file.
Any ideas?
Thanks in advance
PROGRAM:
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.mllib.rdd.RDDFunctions._
import scala.sys.process._
import org.apache.spark.mllib.linalg.Vectors
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerConfig, ProducerRecord}
import java.util.HashMap
import org.apache.hadoop.io.{LongWritable, NullWritable, Text}
import org.apache.hadoop.fs.Path
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat
import kafka.serializer.StringDecoder
import org.apache.spark.streaming._
import org.apache.spark.streaming.kafka._
import org.apache.spark.SparkConf
import StreamingContext._
object Traccia2014{
def main(args: Array[String]){
if (args.length < 2) {
System.err.println(s"""
|Usage: DirectKafkaWordCount <brokers> <test><topicRisultato>
| <brokers> is a list of one or more Kafka brokers
| <topics> is a list of one or more kafka topics to consume from
|
""".stripMargin)
System.exit(1)
}
val Array(brokers,risultato) = args
val sparkConf = new SparkConf().setAppName("Traccia2014")
val ssc = new StreamingContext(sparkConf, Seconds(5))
val lines = ssc.textFileStream("/user/root/")
//val lines= ssc.fileStream[LongWritable, Text, TextInputFormat](directory="/user/root/",
// filter = (path: org.apache.hadoop.fs.Path) => //(!path.getName.endsWith("._COPYING")),newFilesOnly = true)
//********** Definizioni Producer***********
val props = new HashMap[String, Object]()
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, brokers)
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
"org.apache.kafka.common.serialization.StringSerializer")
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
"org.apache.kafka.common.serialization.StringSerializer")
val producer = new KafkaProducer[String, String](props)
val slice=30
lines.foreachRDD( rdd => {
if(!rdd.isEmpty){
val min=rdd.map(x => x.split(",")(0)).reduce((a, b) => if (a < b) a else b)
if(!min.isEmpty){
val ipDst= rdd.map(x => (((x.split(",")(0).toInt - min.toInt).toLong/slice).round*slice+" "+(x.split(",")(2)),1)).reduceByKey(_ + _)
if(!ipDst.isEmpty){
val ipSrc=rdd.map(x => (((x.split(",")(0).toInt - min.toInt).toLong/slice).round*slice+" "+(x.split(",")(1)),1)).reduceByKey(_ + _)
if(!ipSrc.isEmpty){
val Rapporto=ipSrc.leftOuterJoin(ipDst).mapValues{case (x,y) => x.asInstanceOf[Int] / y.getOrElse(1) }
val RapportoFiltrato=Rapporto.filter{case (key, value) => value > 100 }
println("###(ConsumerScala) CalcoloRapporti: ###")
Rapporto.collect().foreach(println)
val str = Rapporto.collect().mkString("\n")
println(s"###(ConsumerScala) Produco Risultato : ${str}")
val message = new ProducerRecord[String, String](risultato, null, str)
producer.send(message)
Thread.sleep(1000)
}else{
println("src vuoto")
}
}else{
println("dst vuoto")
}
}else{
println("min vuoto")
}
}else
{
println("rdd vuoto")
}
})//foreach
ssc.start()
ssc.awaitTermination()
} }
/user/root/head800k.csv._COPYING is a transient file that is created while the copy process is on going. Wait for the copy process to complete and you will have a fail without the _COPYING suffix ie /user/root/head800k.csv.
to filter these transient in your spark-streaming job you can use the fileStream method documented here
as shown below for example
ssc.fileStream[LongWritable, Text, TextInputFormat](
directory="/user/root/",
filter = (path: org.apache.hadoop.fs.Path) => (!path.getName.endsWith("_COPYING")), // add other filters like files starting with dot etc
newFilesOnly = true)
EDIT
since you are moving your file from local filesystem to HDFS, the best solution is to move your file to a temporary staging location in the HDFS and then move them to your target directory. copying or moving within the HDFS filesystem should avoid the transient files
I have an implementation of WordCount that I submit on an apache-spark cluster.
I was wondering, if tasks are launched on executors that have two cores, will they run concurrently on those two cores?
I've seen this question, but I'm not sure whether or not I can apply the answer to my case.
import org.apache.spark._
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext._
object WordCount {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("WordCount")
val spark = new SparkContext(conf)
val filename = if (args(0).length > 0) args(0) else "hdfs://x.x.x.x:60070/tortue/wordcount"
val textFile = spark.textFile(filename)
val counts = textFile.flatMap(line => line.split(" "))
.map (word => (word, 1))
.reduceByKey(_ + _)
counts.saveAsTextFile("hdfs://x.x.x.x:60070/tortue/wcresults")
spark.stop()
}
}
It depends on how many cores Spark is configured to use on the executors, spark.executor.cores is the parameter and its documented in http://spark.apache.org/docs/latest/configuration.html .
i want to run the streaming k-means-example.scala code source (mllib) on spark , someone tell me how i can how I can display the content of clusters after clustering (for example i want to clustering data into 3 clusters , how i can display the cntent of the 3 clusters in 3 files and the content of centers in file.txt)
package org.apache.spark.examples.mllib
import org.apache.spark.SparkConf
import org.apache.spark.mllib.clustering.StreamingKMeans
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.streaming.{Seconds, StreamingContext}
object StreamingKMeansExample {
def main(args: Array[String]) {
if (args.length != 5) {
System.err.println( "Usage: StreamingKMeansExample " +
"<trainingDir> <testDir> <batchDuration> <numClusters> <numDimensions>")
System.exit(1)
}
val conf = new SparkConf().setMaster("localhost").setAppName
("StreamingKMeansExample")
val ssc = new StreamingContext(conf, Seconds(args(2).toLong))
val trainingData = ssc.textFileStream(args(0)).map(Vectors.parse)
val testData = ssc.textFileStream(args(1)).map(LabeledPoint.parse)
val model = new StreamingKMeans().setK(args(3).toInt)
.setDecayFactor(1.0)
.setRandomCenters(args(4).toInt, 0.0)
model.trainOn(trainingData)
model.predictOnValues(testData.map(lp => (lp.label, lp.features))).print()
ssc.start()
ssc.awaitTermination()
You would have to use the predict method on your RDD( look here for reference)
Then you could zip your Rdd containing values and your RDD of predicted clusters they fall in.