How to set L2 constrain on cw_l2 attack? - neural-network

How do we set constrain on L2 distance for cw L2 attack and deepfool attack? In attack publications authors mention smaller Lp distance to claim a stronger attack, but how to limit L2 distance to a fixed value is confusing. For L-ifinity it can be a max min crop but L2 distance is the average L2 distance on pixel value if I am not wrong, and how do we set that to be a fixed value?

Adversarial examples are commonly crafted by introducing a perturbation that changes the classifier's prediction while the underlying class of the input did not change. Setting a maximum value for the norm of that introduced perturbation is difficult, whether the norm is measured with L2 or Linfinity. Typically, this norm is constrained to be smaller than a certain constant epsilon, because we assume that if epsilon is small enough, it is unlikely that the underlying class of the input changed once it has been perturbed. However, we now know that it is difficult to set a value of epsilon that holds across all inputs. You can find more details here: https://arxiv.org/abs/1903.10484

Related

Choosing a suitable plaintext_modulus

In choosing parameters such as plaintext_modulus, is there any good strategy? (aside from guess-and-check until the output looks correct)
In particular, I'm experimenting with IntegerEncoder with BFV. My (potentially-wrong) understanding is that the plaintext_modulus is not the modulus for the integer being encoded, but the modulus for each coefficient in the polynomial representation.
With B=2, it looks like these coefficients will just be 0 or 1. However, after operations like add and multiply are applied, this clearly is no longer the case. Is there a good way to determine a good bound for the coefficients, in order to pick plaintext_modulus?
My (potentially-wrong) understanding is that the plaintext_modulus is not the modulus for the integer being encoded, but the modulus for each coefficient in the polynomial representation.
This is the correct way of thinking when using IntegerEncoder. Note, however, that when using BatchEncoder (PolyCRTBuilder in SEAL 2.*) the situation is exactly the opposite: each slot in the plaintext vector is an integer modulo poly_modulus.
With B=2, it looks like these coefficients will just be 0 or 1. However, after operations like add and multiply are applied, this clearly is no longer the case. Is there a good way to determine a good bound for the coefficients, in order to pick plaintext_modulus?
The whole point of IntegerEncoder is that fresh encodings have as small coefficients as possible, delaying plain_modulus overflow and allowing you to use smaller plain_modulus (implies smaller noise growth). SEAL 2.* had an automatic parameter selection tool that performed heuristic upper bound estimates on noise growth and plaintext coefficient growth, and basically did exactly what you want. Unfortunately these estimates were performed on a per-operation basis, causing overestimates in the earlier operations to blow up in later stages of the computation. As a result, the estimates were not very tight for more than the simplest computations and in many cases the parameters this tool provided were oversized.
To estimate the plaintext coefficient growth in multiplications, let's consider two polynomials p(x) and q(x). Obviously the product will have degree exactly equal to deg(p)+deg(q)---that part is easy. If |P| denotes the infinity norm of a polynomial P (absolute value of largest coefficient), then:
|p*q| <= min{deg(p)+1, deg(q)+1} * |p||q|.
Actually, SEAL 2.* is a little bit more precise here. Instead of using the degrees, it uses the number of non-zero coefficients in these polynomials. This makes a big difference when the polynomials are sparse, in which case the contribution from cross-terms is much smaller and a better bound is:
|p*q| <= min{#(non_zero_coeffs(p)), #(non_zero_coeffs(q))} * |p||q|.
A deeper analysis of coefficient growth in IntegerEncoder-like encoders is done in https://eprint.iacr.org/2016/250 by Costache et al., which you may want to look at.

Scale correction for IFFT of smaller frequency space created by FFT

This might be considered a repost of this question however I am seeking a much deeper explanation on this matter and how to properly solve this problem.
I want to study the PSF/SRF of a voxel in a 44x44 matrix. For that I create a matrix 100x bigger (4400x4400) so 1 voxel in the smaller matrix corresponds to 100x100 voxels in the bigger one. I set the values to 1 of those 100^2 voxels.
Now I do a FFT of the big matrix and an IFFT of only the center portion (44x44) of the frequency space. This is the code:
A = zeros(4400,4400);
A(2201:2300,2201:2300) = 1;
B = fftshift(fft2(A));
C = ifft2(ifftshift(B(2179:2222,2179:2222)));
D = numel(C)/numel(B) * C;
figure, subplot(1,3,1), imshow(A), subplot(1,3,2), imshow(real(C)), subplot(1,3,3), imshow(real(D));
The problem is the following: I would expect the value in the voxel of the new 44x44 matrix to be 1. However, using this numel factor correction they decrease to 0.35. And if I don't apply the correction they go up to huge values.
For starters, let me try to clarify the scaling issue: For the DFT/IDFT there are various scaling conventions regarding the input size. You either need a factor of 1/N in the DFT or a factor of 1/N in the IDFT or a factor of 1/sqrt(N) in both. All have pros and cons and all are equally valid.
Matlab uses the 1/N in the IDFT convention, as you can see in the documentation.
In your example, the forward DFT has a size 4400, the backward IDFT a size of 44. Therefore the IDFT scaling is a factor 100 less than it should be to match the forward transformation and your values are a factor of 100 too large. Since you're doing a 2-D DFT/IDFT, the factor 100 is missing twice, so your rescaling should be 100^2. Your numel(C)/numel(B) does exactly that, I've just tried to give you the explanation for it.
A reason why you might not see the 1 is that you're plotting only the real part of the inverse DFT. Since you did some fftshifting you might have introduced a phase so that part of your signal is in the imaginary part.
edit: Another reason is that you truncate B to the central 44 by 44 window before transforming back. Since A is not bandlimited, B has energy also outside this window. By truncating you are losing a part of it. Therefore, it is not surprising that the resulting amplitude is lower.
Here is a zoom on the image of B to show this phenomenon:
The red square is what you keep, everything else is truncated. Due to Parsevals theorem, the total energy in image and Fourier domain is equal so by truncation you must also reduce the energy of your signal in the image domain.

Which scaling technique does it use?

I have a matrix X, the size of which is 100*2000 double. I want to know which kind of scaling technique is applied to matrix X in the following command, and why it does not use z-score to do scaling?
X = X./repmat(sqrt(sum(X.^2)),size(X,1),1);
That scaling comes from linear algebra. That's what we call normalizing by producing a unit vector. Assuming that each row is an observation and each column is a feature, what's happening here is that we are going through every observation that you collected and normalizing each feature value over all observations such that the overall length / magnitude of a particular feature for all observations is set to 1.
The bottom division takes a look at each feature and determines the norm or magnitude of the feature over all observations. Once you find these magnitudes, you then take each feature for each observation and divide by their respective magnitudes.
The reason why unit vectors are often employed is to describe a point in feature space with respect to a set of basis vectors. Normalizing by producing unit vectors gives you the smallest possible way to represent one component in feature space and so what's probably happening here is that the observations are now being transformed such that each component / feature is being represented in terms of a set of basis vectors. Each basis vector is one feature in the data.
Check out the Wikipedia article on Unit Vectors for more details: http://en.wikipedia.org/wiki/Unit_vector

Minimization of L1-Regularized system, converging on non-minimum location?

This is my first post to stackoverflow, so if this isn't the correct area I apologize. I am working on minimizing a L1-Regularized System.
This weekend is my first dive into optimization, I have a basic linear system Y = X*B, X is an n-by-p matrix, B is a p-by-1 vector of model coefficients and Y is a n-by-1 output vector.
I am trying to find the model coefficients, I have implemented both gradient descent and coordinate descent algorithms to minimize the L1 Regularized system. To find my step size I am using the backtracking algorithm, I terminate the algorithm by looking at the norm-2 of the gradient and terminating if it is 'close enough' to zero(for now I'm using 0.001).
The function I am trying to minimize is the following (0.5)*(norm((Y - X*B),2)^2) + lambda*norm(B,1). (Note: By norm(Y,2) I mean the norm-2 value of the vector Y) My X matrix is 150-by-5 and is not sparse.
If I set the regularization parameter lambda to zero I should converge on the least squares solution, I can verify that both my algorithms do this pretty well and fairly quickly.
If I start to increase lambda my model coefficients all tend towards zero, this is what I expect, my algorithms never terminate though because the norm-2 of the gradient is always positive number. For example, a lambda of 1000 will give me coefficients in the 10^(-19) range but the norm2 of my gradient is ~1.5, this is after several thousand iterations, While my gradient values all converge to something in the 0 to 1 range, my step size becomes extremely small (10^(-37) range). If I let the algorithm run for longer the situation does not improve, it appears to have gotten stuck somehow.
Both my gradient and coordinate descent algorithms converge on the same point and give the same norm2(gradient) number for the termination condition. They also work quite well with lambda of 0. If I use a very small lambda(say 0.001) I get convergence, a lambda of 0.1 looks like it would converge if I ran it for an hour or two, a lambda any greater and the convergence rate is so small it's useless.
I had a few questions that I think might relate to the problem?
In calculating the gradient I am using a finite difference method (f(x+h) - f(x-h))/(2h)) with an h of 10^(-5). Any thoughts on this value of h?
Another thought was that at these very tiny steps it is traveling back and forth in a direction nearly orthogonal to the minimum, making the convergence rate so slow it is useless.
My last thought was that perhaps I should be using a different termination method, perhaps looking at the rate of convergence, if the convergence rate is extremely slow then terminate. Is this a common termination method?
The 1-norm isn't differentiable. This will cause fundamental problems with a lot of things, notably the termination test you chose; the gradient will change drastically around your minimum and fail to exist on a set of measure zero.
The termination test you really want will be along the lines of "there is a very short vector in the subgradient."
It is fairly easy to find the shortest vector in the subgradient of ||Ax-b||_2^2 + lambda ||x||_1. Choose, wisely, a tolerance eps and do the following steps:
Compute v = grad(||Ax-b||_2^2).
If x[i] < -eps, then subtract lambda from v[i]. If x[i] > eps, then add lambda to v[i]. If -eps <= x[i] <= eps, then add the number in [-lambda, lambda] to v[i] that minimises v[i].
You can do your termination test here, treating v as the gradient. I'd also recommend using v for the gradient when choosing where your next iterate should be.

How to overcome singularities in numerical integration (in Matlab or Mathematica)

I want to numerically integrate the following:
where
and a, b and β are constants which for simplicity, can all be set to 1.
Neither Matlab using dblquad, nor Mathematica using NIntegrate can deal with the singularity created by the denominator. Since it's a double integral, I can't specify where the singularity is in Mathematica.
I'm sure that it is not infinite since this integral is based in perturbation theory and without the
has been found before (just not by me so I don't know how it's done).
Any ideas?
(1) It would be helpful if you provide the explicit code you use. That way others (read: me) need not code it up separately.
(2) If the integral exists, it has to be zero. This is because you negate the n(y)-n(x) factor when you swap x and y but keep the rest the same. Yet the integration range symmetry means that amounts to just renaming your variables, hence it must stay the same.
(3) Here is some code that shows it will be zero, at least if we zero out the singular part and a small band around it.
a = 1;
b = 1;
beta = 1;
eps[x_] := 2*(a-b*Cos[x])
n[x_] := 1/(1+Exp[beta*eps[x]])
delta = .001;
pw[x_,y_] := Piecewise[{{1,Abs[Abs[x]-Abs[y]]>delta}}, 0]
We add 1 to the integrand just to avoid accuracy issues with results that are near zero.
NIntegrate[1+Cos[(x+y)/2]^2*(n[x]-n[y])/(eps[x]-eps[y])^2*pw[Cos[x],Cos[y]],
{x,-Pi,Pi}, {y,-Pi,Pi}] / (4*Pi^2)
I get the result below.
NIntegrate::slwcon:
Numerical integration converging too slowly; suspect one of the following:
singularity, value of the integration is 0, highly oscillatory integrand,
or WorkingPrecision too small.
NIntegrate::eincr:
The global error of the strategy GlobalAdaptive has increased more than
2000 times. The global error is expected to decrease monotonically after a
number of integrand evaluations. Suspect one of the following: the
working precision is insufficient for the specified precision goal; the
integrand is highly oscillatory or it is not a (piecewise) smooth
function; or the true value of the integral is 0. Increasing the value of
the GlobalAdaptive option MaxErrorIncreases might lead to a convergent
numerical integration. NIntegrate obtained 39.4791 and 0.459541
for the integral and error estimates.
Out[24]= 1.00002
This is a good indication that the unadulterated result will be zero.
(4) Substituting cx for cos(x) and cy for cos(y), and removing extraneous factors for purposes of convergence assessment, gives the expression below.
((1 + E^(2*(1 - cx)))^(-1) - (1 + E^(2*(1 - cy)))^(-1))/
(2*(1 - cx) - 2*(1 - cy))^2
A series expansion in cy, centered at cx, indicates a pole of order 1. So it does appear to be a singular integral.
Daniel Lichtblau
The integral looks like a Cauchy Principal Value type integral (i.e. it has a strong singularity). That's why you can't apply standard quadrature techniques.
Have you tried PrincipalValue->True in Mathematica's Integrate?
In addition to Daniel's observation about integrating an odd integrand over a symmetric range (so that symmetry indicates the result should be zero), you can also do this to understand its convergence better (I'll use latex, writing this out with pen and paper should make it easier to read; it took a lot longer to write than to do, it's not that complicated):
First, epsilon(x)-\epsilon(y)\propto\cos(y)-\cos(x)=2\sin(\xi_+)\sin(\xi_-) where I have defined \xi_\pm=(x\pm y)/2 (so I've rotated the axes by pi/4). The region of integration then is \xi_+ between \pi/\sqrt{2} and -\pi/\sqrt{2} and \xi_- between \pm(\pi/\sqrt{2}-\xi_-). Then the integrand takes the form \frac{1}{\sin^2(\xi_-)\sin^2(\xi_+)} times terms with no divergences. So, evidently, there are second-order poles, and this isn't convergent as presented.
Perhaps you could email the persons who obtained an answer with the cos term and ask what precisely it is they did. Perhaps there's a physical regularisation procedure being employed. Or you could have given more information on the physical origin of this (some sort of second order perturbation theory for some sort of bosonic system?), had that not been off-topic here...
May be I am missing something here, but the integrand
f[x,y]=Cos^2[(x+y)/2]*(n[x]-n[y])/(eps[x]-eps[y]) with n[x]=1/(1+Exp[Beta*eps[x]]) and eps[x]=2(a-b*Cos[x]) is indeed a symmetric function in x and y: f[x,-y]= f[-x,y]=f[x,y].
Therefore its integral over any domain [-u,u]x[-v,v] is zero. No numerical integration seems to be needed here. The result is just zero.