Matlab subplots in loop: only shows plots in last iteration - matlab

I am trying to create a big plot in Matlab by adding subplots in a loop.
% Generation of examples and targets
x = 0 : 0.05 : 3 * pi;
y = sin(x.^2);
% Deep Learning Toolbox™ software arranges concurrent vectors with a
% matrix, and sequential vectors with a cell array (where the second index is the time step).
% con2seq and seq2con allow concurrent vectors to be converted to sequential vectors, and back again.
p = con2seq(x);
t = con2seq(y); % convert the data to a useful format
% Creation of networks (based on algorlm1.m)
num_hid = 50;
% Epoch quantities to evaluate
num_epochs = [1 20 1000]
% We'll evaluate these algorithms
training_algorithms = {
'traingd',
'traingda',
'traincgf',
'traincgp',
'trainlm',
'trainbfg'
};
%% Initialization
% Create arrays to store networks and training parameters
networks = cell(length(training_algorithms), 1);
durations = zeros(length(training_algorithms), 1);
slopes = cell(length(training_algorithms), 1);
intercepts = cell(length(training_algorithms), 1);
correlations = cell(length(training_algorithms), 1);
for tai = 1:length(training_algorithms)
% Create new feedforwardnet
net = feedforwardnet(num_hid, training_algorithms{tai});
% Set all networks weights and biases equal (to the first one created)
if tai > 1
net.IW{1,1} = networks{tai-1}.IW{1,1};
net.LW{1,1} = networks{tai-1}.LW{1,1};
net.b{1} = networks{tai-1}.b{1};
net.b{2} = networks{tai-1}.b{2};
end
% Store network
networks{tai} = net;
end
figure;
for tai = 1:6
net = networks{tai}; % Load network
net.trainParam.showWindow = false; % Don't show graph
% Train network, and time training
tic;
net = train(net, p, t);
durations(tai)=toc;
% Simulate input on trained networks (and convert to double format)
y_result = cell2mat(sim(net, p));
% Evaluate result
[slopes{tai}, intercepts{tai}, correlations{tai}] = postreg(y_result, y);
% Add network to array
networks{tai} = net;
% Plot results
subplot(2,6,tai);
plot(x,y,'bx',x,y_result,'r'); % Plot the sine function and the output of the network
%title('1 epoch');
legend('target',training_algorithms{tai},'Location','north');
subplot(2,6, tai+6);
postregm(y_result, y); % perform a linear regression analysis and plot the result
end
I only get plots that were created in the last iteration though (when tai == 6). I tried adding 'hold on' in front of the loop, and turned it off again. Any ideas why this is happening?
EDIT: Here's the resulting figure:
EDIT2: I added code so it could be reproduced. You'll need the deep learning toolbox.

Related

Why is my decision boundary wrong for logistic regression using gradient descent?

I am trying to solve a classification task using logistic regression. Part of my task is to plot the decision boundary. I find that the gradient of the decision boundary seems to be solved correctly by my algorithm but when plotting the boundary is too high and does not separate the points well. I cannot work out why this is and would be grateful for any advice to solve this issue.
data = open('Question5.mat');
x = data.x; y = data.y; % Extract data for ease of use
LR = 0.001; % Set tunable learning rate for gradient descent
w_est = [0; 0; 0]; % Set inital guess for a, b, and c
cost = []; % Initalise array to hold value of cost function
figure;
for i = 1:20000 % Set iteration limit for gradient descent
iteration_cost = 0; grad_a = 0; grad_b = 0; grad_c = 0; % Set innial value of 0 for summed terms
for m = 1:1100 % Iterate through data points
y_hat_est = 1./(1+exp(-w_est'*[x(m,1); x(m,2); 1])); % Calculate value of sigmoid function with estimated coefficients for each datapoint
iteration_cost = iteration_cost + y(m)*log(y_hat_est)+(1-y(m))*log(1-y_hat_est); % Calculate cost function and add it to summed term for each data point
% Calculate each gradient term for each data point and add to
% summed gradient
grad_a = grad_a + (y_hat_est - y(m))*x(m,1);
grad_b = grad_b + (y_hat_est - y(m))*x(m,2);
grad_c = grad_c + (y_hat_est - y(m))*x(m,3);
end
g = [grad_a; grad_b; grad_c]; % Create vector of gradients
w_est = w_est - LR*g; % Update estimate vector with next term
cost(i) = -iteration_cost; % Add the value of the cost function to the array for costs
if mod(i,1000) == 0 % Only plot on some iterations to speed up program
hold off
gscatter(x(:,1),x(:,2),y,'rb'); % Plot scatter plot grouped by class
xlabel('x1'); ylabel('x2'); title(i); % Add title and labels to figure
hold on
x1_plot = -6:4; x2_plot = -3:7; % Create array of values for plotting
plot( -(w_est(1)*x1_plot + w_est(3)) /w_est(2), x2_plot); % Plot decision boundary based on the current coefficient estimates
% pause(1) % Add delay to aid visualisation
end
end
hold off;
figure; plot(cost) % Plot the cost function
title('Cost function'); xlabel('Iteration number'); ylabel('cost');
enter image description here

Multivariate Linear Regression prediction in Matlab

I am trying to predict the energy output (y), based on two predictors (X).
I have a total sample of 7034 samples (Xtot and ytot), corresponding to nearly 73 days of records.
I selected a week period within the data.
Then, I used the fitlm to create the MLR model.
Proceeded to the prediction.
Is this right? Is this the way that it should be used to obtain a 48 steps ahead prediction?
Thank you!
Xtot = dadosPVPREV(2:3,:);%predictors
ytot = dadosPVPREV(1,:);%variable to be predicted
Xtot = Xtot';
ytot = ytot';
X = Xtot(1:720,:);%period into consideration - predictors
y = ytot(1:720,:);%period into considaration - variable to be predicted
lmModel = fitlm(X, y, 'linear', 'RobustOpts', 'on'); %MLR fit
Xnew = Xtot(720:769,:); %new predictors of the y
ypred = predict(lmModel, Xnew); %predicted values of y
yreal = ytot(720:769); %real values of the variable to be predicted
RMSE = sqrt(mean((yreal-ypred).^2)); %calculation of the error between the predicted and real values
figure; plot(ypred);hold; plot(yreal)
I see that over the past few days you have been struggling to train a prediction model. The following is an example of training such a model using linear regression. In this example, the values of the previous few steps are used to predict 5 steps ahead. The Mackey-Glass function is used as a data set to train the model.
close all; clc; clear variables;
load mgdata.dat; % importing Mackey-Glass dataset
T = mgdata(:, 1); % time steps
X1 = mgdata(:, 2); % 1st predictor
X2 = flipud(mgdata(:, 2)); % 2nd predictor
Y = ((sin(X1).^2).*(cos(X2).^2)).^.5; % response
to_x = [-21 -13 -8 -5 -3 -2 -1 0]; % time offsets in the past, used for predictors
to_y = +3; % time offset in the future, used for reponse
T_trn = ((max(-to_x)+1):700)'; % time slice used to train model
i_x_trn = bsxfun(#plus, T_trn, to_x); % indices of steps used to construct train data
X_trn = [X1(i_x_trn) X2(i_x_trn)]; % train data set
Y_trn = Y(T_trn+to_y); % train responses
T_tst = (701:(max(T)-to_y))'; % time slice used to test model
i_x_tst = bsxfun(#plus, T_tst, to_x); % indices of steps used to construct train data
X_tst = [X1(i_x_tst) X2(i_x_tst)]; % test data set
Y_tst = Y(T_tst+to_y); % test responses
mdl = fitlm(X_trn, Y_trn) % training model
Y2_trn = feval(mdl, X_trn); % evaluating train responses
Y2_tst = feval(mdl, X_tst); % evaluating test responses
e_trn = mse(Y_trn, Y2_trn) % train error
e_tst = mse(Y_tst, Y2_tst) % test error
Also, using data transformation technique to generate new features in some models can reduce the prediction error:
featGen = #(x) [x x.^2 sin(x) exp(x) log(x)]; % feature generator
mdl = fitlm(featGen(X_trn), Y_trn)
Y2_trn = feval(mdl, featGen(X_trn)); % evaluating train responses
Y2_tst = feval(mdl, featGen(X_tst)); % evaluating test responses

Creating a heatmap of the logistic map for different values of lambda in matlab

So I am trying to create a heatmap of the logistic map for lambda =2.5 till lambda 4, showing that some outcomes are more common than others as part of my thesis. However so far I did not came far. I plotted the logistic map, however the heatmap part is a bit of a hassle and I can't find how to do it. So, how do I create a heatmap using the coding that I have?
% Logistics Map
% Classic chaos example. Plots semi-stable values of
% x(n+1) = r*x(n)*(1-x(n)) as r increases to 4.
%
clear
scale = 1000; % determines the level of rounding
maxpoints = 200; % determines maximum values to plot
N = 3000; % number of "r" values to simulate
a = 2.5; % starting value of "r"
b = 4; % final value of "r"... anything higher diverges.
rs = linspace(a,b,N); % vector of "r" values
M = 500; % number of iterations of logistics equation
% Loop through the "r" values
for j = 1:length(rs)
r=rs(j); % get current "r"
x=zeros(M,1); % allocate memory
x(1) = 0.5; % initial condition (can be anything from 0 to 1)
for i = 2:M, % iterate
x(i) = r*x(i-1)*(1-x(i-1));
end
% only save those unique, semi-stable values
out{j} = unique(round(scale*x(end-maxpoints:end)));
end
% Rearrange cell array into a large n-by-2 vector for plotting
data = [];
for k = 1:length(rs)
n = length(out{k});
data = [data; rs(k)*ones(n,1),out{k}];
end
% Plot the data
figure(97);clf
h=plot(data(:,1),data(:,2)/scale,'b.');
set(h,'markersize',0.25)
ylim([0 1])
set(gcf,'color','w')
Thanks a lot in advance!

How can I split my dataset in training/validation/test set when the dataset is a cell array?

I am training an Elman network (a specific type of Recurrent Neural Network) and for that reason my datasets (input/target) need to be cell arrays (so that the examples are considered as a sequence by the train function).
But, I don't manage to trigger the use of a validation and test set by the train function.
Here is an example, where I want a validation and test set to be used but the train function is not using any (I know that by looking at the performance plot from the 'nntraintool' wizard or by looking at the content of the 'tr' variable in my example below). It seems the "divideind" property and indexes are ignored.
%% Set the parameters of the run
n_neurons = 50; % Number of neurons
n = 1000; % Total number of samples
ne = 500; % Number of epochs
%% Create the samples
% Allocate memory
u = zeros(1, n);
x = zeros(1, n);
y = zeros(1, n);
% Initialize u, x and y
u(1)=randn;
x(1)=rand+sin(u(1));
y(1)=x(1);
% Calculate the samples
for i=2:n
u(i)=randn;
x(i)=.8*x(i-1)+sin(u(i));
y(i)=x(i);
end
%% Create the datasets
X=num2cell(u);
T=num2cell(y);
%% Train and simulate the network
% Create the net and apply the selected parameters
net = newelm(X,T,n_neurons); % Create network
net.trainParam.epochs = ne; % Number of epochs
%% This seems to be ignored
net.divideFcn = 'divideind';
net.divideParam.trainInd = 1:800;
net.divideParam.valInd = 801:900;
net.divideParam.testInd = 901:1000;
[net,tr]= train(net,X,T);
I found the answer, I need to add:
net.divideMode = 'time';
so that cell arrays can be divided in train/validation/test sets, for example with:
net.divideFcn = 'divideind';

Morlet wavelet transformation function returns nonsensical plot

I have written a matlab function (Version 7.10.0.499 (R2010a)) to evaluate incoming FT signal and calculate the morlet wavelet for the signal. I have a similar program, but I needed to make it more readable and closer to mathematical lingo. The output plot is supposed to be a 2D plot with colour showing the intensity of the frequencies. My plot seems to have all frequencies the same per time. The program does make an fft per row of time for each frequency, so I suppose another way to look at it is that the same line repeats itself per step in my for loop. The issue is I have checked with the original program, which does return the correct plot, and I cannot locate any difference beyond what I named the values and how I organized the code.
function[msg] = mile01_wlt(FT_y, f_mn, f_mx, K, N, F_s)
%{
Fucntion to perform a full wlt of a morlet wavelett.
optimization of the number of frequencies to be included.
FT_y satisfies the FT(x) of 1 envelope and is our ft signal.
f min and max enter into the analysis and are decided from
the f-image for optimal values.
While performing the transformation there are different scalings
on the resulting "intensity".
Plot is made with a 2D array and a colour code for intensity.
version 05.05.2016
%}
%--------------------------------------------------------------%
%{
tableofcontents:
1: determining nr. of analysis f, prints and readies f's to be used.
2: ensuring correct orientation of FT_y
3:defining arrays
4: declaring waveletdiagram and storage of frequencies
5: for-loop over all frequencies:
6: reducing file to manageable size by truncating time.
7: marking plot to highlight ("randproblemer")
8: plotting waveletdiagram
%}
%--------------------------------------------------------------%
%1: determining nr. of analysis f, prints and readies f's to be used.
DF = floor( log(f_mx/f_mn) / log(1+( 1/(8*K) ) ) ) + 1;% f-spectre analysed
nr_f_analysed = DF %output to commandline
f_step = (f_mx/f_mn)^(1/(DF-1)); % multiplicative step for new f_a
f_a = f_mn; %[Hz] frequency of analysis
T = N/F_s; %[s] total time sampled
C = 2.0; % factor to scale Psi
%--------------------------------------------------------------%
%2: ensuring correct orientation of FT_y
siz = size(FT_y);
if (siz(2)>siz(1))
FT_y = transpose(FT_y);
end;
%--------------------------------------------------------------%
%3:defining arrays
t = linspace(0, T*(N-1)/N, N); %[s] timespan
f = linspace(0, F_s*(N-1)/N, N); %[Hz] f-specter
%--------------------------------------------------------------%
%4: declaring waveletdiagram and storage of frequencies
WLd = zeros(DF,N); % matrix of DF rows and N columns for storing our wlt
f_store = zeros(1,DF); % horizontal array for storing DF frequencies
%--------------------------------------------------------------%
%5: for-loop over all frequencies:
for jj = 1:DF
o = (K/f_a)*(K/f_a); %factor sigma
Psi = exp(- 0*(f-f_a).*(f-f_a)); % FT(\psi) for 1 envelope
Psi = Psi - exp(-K*K)*exp(- o*(f.*f)); % correctional element
Psi = C*Psi; %factor. not set in stone
%next step fits 1 row in the WLd (3 alternatives)
%WLd(jj,:) = abs(ifft(Psi.*transpose(FT_y)));
WLd(jj,:) = sqrt(abs(ifft(Psi.*transpose(FT_y))));
%WLd(jj,:) = sqrt(abs(ifft(Psi.*FT_y))); %for different array sizes
%and emphasizes weaker parts.
%prep for next round
f_store (jj) = f_a; % storing used frequencies
f_a = f_a*f_step; % determines the next step
end;
%--------------------------------------------------------------%
%6: reducing file to manageable size by truncating time.
P = floor( (K*F_s) / (24*f_mx) );%24 not set in stone
using_every_P_point = P %printout to cmdline for monitoring
N_P = floor(N/P);
points_in_time = N_P %printout to cmdline for monitoring
% truncating WLd and time
WLd2 = zeros(DF,N_P);
for jj = 1:DF
for ii = 1:N_P
WLd2(jj,ii) = WLd(jj,ii*P);
end
end
t_P = zeros(1,N_P);
for ii = 1:N_P % set outside the initial loop to reduce redundancy
t_P(ii) = t(ii*P);
end
%--------------------------------------------------------------%
%7: marking plot to highlight boundary value problems
maxval = max(WLd2);%setting an intensity
mxv = max(maxval);
% marks in wl matrix
for jj= 1:DF
m = floor( K*F_s / (P*pi*f_store(jj)) ); %finding edges of envelope
WLd2(jj,m) = mxv/2; % lower limit
WLd2(jj,N_P-m) = mxv/2;% upper limit
end
%--------------------------------------------------------------%
%8: plotting waveletdiagram
figure;
imagesc(t_P, log10(f_store), WLd2, 'Ydata', [1 size(WLd2,1)]);
set(gca, 'Ydir', 'normal');
xlabel('Time [s]');
ylabel('log10(frequency [Hz])');
%title('wavelet power spectrum'); % for non-sqrt inensities
title('sqrt(wavelet power spectrum)'); %when calculating using sqrt
colorbar('location', 'southoutside');
msg = 'done.';
There are no error message, so I am uncertain what exactly I am doing wrong.
Hope I followed all the guidelines. Otherwise, I apologize.
edit:
my calling program:
% establishing parameters
N = 2^(16); % | number of points to sample
F_s = 3.2e6; % Hz | samplings frequency
T_t = N/F_s; % s | length in seconds of sample time
f_c = 2.0e5; % Hz | carrying wave frequency
f_m = 8./T_t; % Hz | modulating wave frequency
w_c = 2pif_c; % Hz | angular frequency("omega") of carrying wave
w_m = 2pif_m; % Hz | angular frequency("omega") of modulating wave
% establishing parameter arrays
t = linspace(0, T_t, N);
% function variables
T_h = 2*f_m.*t; % dimless | 1/2 of the period for square signal
% combined carry and modulated wave
% y(t) eq. 1):
y_t = 0.5.*cos(w_c.*t).*(1+cos(w_m.*t));
% y(t) eq. 2):
% y_t = 0.5.*cos(w_c.*t)+0.25*cos((w_c+w_m).*t)+0.25*cos((w_c-w_m).*t);
%square wave
sq_t = cos(w_c.*t).*(1 - mod(floor(t./T_h), 2)); % sq(t)
% the following can be exchanged between sq(t) and y(t)
plot(t, y_t)
% plot(t, sq_t)
xlabel('time [s]');
ylabel('signal amplitude');
title('plot of harmonically modulated signal with carrying wave');
% title('plot of square modulated signal with carrying wave');
figure()
hold on
% Fourier transform and plot of freq-image
FT_y = mile01_fftplot(y_t, N, F_s);
% FT_sq = mile01_fftplot(sq_t, N, F_s);
% Morlet wavelet transform and plot of WLdiagram
%determining K, check t-image
K_h = 57*4; % approximation based on 1/4 of an envelope, harmonious
%determining f min and max, from f-image
f_m = 1.995e5; % minimum frequency. chosen to showcase all relevant f
f_M = 2.005e5; % maximum frequency. chosen to showcase all relevant f
%calling wlt function.
name = 'mile'
msg = mile01_wlt(FT_y, f_m, f_M, K_h, N, F_s)
siz = size(FT_y);
if (siz(2)>siz(1))
FT_y = transpose(FT_y);
end;
name = 'arnt'
msg = arnt_wltransf(FT_y, f_m, f_M, K_h, N, F_s)
The time image has a constant frequency, but the amplitude oscillates resempling a gaussian curve. My code returns a sharply segmented image over time, where each point in time holds only 1 frequency. It should reflect a change in intensity across the spectra over time.
hope that helps and thanks!
I found the error. There is a 0 rather than an o in the first instance of Psi. Thinking I'll maybe rename the value as sig or something. besides this the code works. sorry for the trouble there