Matlab - how does contour plot generating levels automatically? - matlab

I am using contourf to generate filled contour plots on MatLab with specified levels number.
According to the documents (https://www.mathworks.com/help/matlab/ref/contourf.html#mw_9088c636-4036-4e00-bd43-f6c5632b63ec)
It says Specify levels as a scalar value n to display the contour lines at n automatically chosen levels (heights).
I am wondering how does it choose the threshold automatically? What is the algorithm of choosing the thresholds? Take level as 1 as an example.
Many thanks!

As said in the comments, it just makes sure there are n dividing lines between your max and min.
Proof:
n=10;
z=peaks;
[m,c]=contour(z,10,'ShowText','on');
levels=linspace(min(z(:)),max(z(:)),n+2);
isequal(c.LevelList,levels(2:end-1))

Related

How to quickly/easily merge and average data in matrix in MATLAB?

I have got a matrix of AirFuelRatio values at certain engine speeds and throttlepositions. (eg. the AFR is 14 at 2500rpm and 60% throttle)
The matrix is now 25x10, and the engine speed ranges from 1200-6000rpm with interval 200rpm, the throttle range from 0.1-1 with interval 0.1.
Say i have measured new values, eg. an AFR of 13.5 at 2138rpm and 74,3% throttle, how do i merge that in the matrix? The matrix closest values are 2000 or 2200rpm and 70 or 80% throttle. Also i don't want new data to replace the older data. How can i make the matrix take this value in and adjust its values to take the new value in account?
Simplified i have the following x-axis values(top row) and 1x4 matrix(below):
2 4 6 8
14 16 18 20
I just measured an AFR value of 15.5 at 3 rpm. If you interpolate the AFR matrix you would've gotten a 15, so this value is out of the ordinary.
I want the matrix to take this data and adjust the other variables to it, ie. average everything so that the more data i put in the more reliable and accurate the matrix becomes. So in the simplified case the matrix would become something like:
2 4 6 8
14.3 16.3 18.2 20.1
So it averages between old and new data. I've read the documentation about concatenation but i believe my problem can't be solved with that function.
EDIT: To clarify my question, the following visual clarification.
The 'matrix' keeps the same size of 5 points whil a new data point is added. It takes the new data in account and adjusts the matrix accordingly. This is what i'm trying to achieve. The more scatterd data i get, the more accurate the matrix becomes. (and yes the green dot in this case would be an outlier, but it explains my case)
Cheers
This is not a matter of simple merge/average. I don't think there's a quick method to do this unless you have simplifying assumptions. What you want is a statistical inference of the underlying trend. I suggest using Gaussian process regression to solve this problem. There's a great MATLAB toolbox by Rasmussen and Williams called GPML. http://www.gaussianprocess.org/gpml/
This sounds more like a data fitting task to me. What you are suggesting is that you have a set of measurements for which you wish to get the best linear fit. Instead of producing a table of data, what you need is a table of values, and then find the best fit to those values. So, for example, I could create a matrix, A, which has all of the recorded values. Let's start with:
A=[2,14;3,15.5;4,16;6,18;8,20];
I now need a matrix of points for the inputs to my fitting curve (which, in this instance, lets assume it is linear, so is the set of values 1 and x)
B=[ones(size(A,1),1), A(:,1)];
We can find the linear fit parameters (where it cuts the y-axis and the gradient) using:
B\A(:,2)
Or, if you want the points that the line goes through for the values of x:
B*(B\A(:,2))
This results in the points:
2,14.1897 3,15.1552 4,16.1207 6,18.0517 8,19.9828
which represents the best fit line through these points.
You can manually extend this to polynomial fitting if you want, or you can use the Matlab function polyfit. To manually extend the process you should use a revised B matrix. You can also produce only a specified set of points in the last line. The complete code would then be:
% Original measurements - could be read in from a file,
% but for this example we will set it to a matrix
% Note that not all tabulated values need to be present
A=[2,14; 3,15.5; 4,16; 5,17; 8,20];
% Now create the polynomial values of x corresponding to
% the data points. Choosing a second order polynomial...
B=[ones(size(A,1),1), A(:,1), A(:,1).^2];
% Find the polynomial coefficients for the best fit curve
coeffs=B\A(:,2);
% Now generate a table of values at specific points
% First define the x-values
tabinds = 2:2:8;
% Then generate the polynomial values of x
tabpolys=[ones(length(tabinds),1), tabinds', (tabinds').^2];
% Finally, multiply by the coefficients found
curve_table = [tabinds', tabpolys*coeffs];
% and display the results
disp(curve_table);

How do I correctly plot the clusters produced from a cluster analysis in matlab?

I want to carry out hierarchical clustering in Matlab and plot the clusters on a scatterplot. I have used the evalclusters function to first investigate what a 'good' number of clusters would be using different criteria values eg Silhouette, CalinskiHarabasz. Here is the code I used for the evaluation (x is my data with 200 observations and 10 variables):
E = evalclusters(x,'linkage','CalinskiHarabasz','KList',[1:10])
%store kmean optimal clusters
optk=E.OptimalK;
%save the outouts to a structure
clust_struc(1).Optimalk=optk;
clust_struc(1).method={'CalinskiHarabasz'}
I then used code similar to what I have found online:
gscatter(x(:,1),x(:,2),E.OptimalY,'rbgckmr','xod*s.p')
%OptimalY is a vector 200 long with the cluster numbers
and this is what I get:
My question may be silly, but I don't understand why I am only using the first two columns of data to produce the scatter plot? I realise that the clusters themselves are being incorporated through the use of the Optimal Y, but should I not be using all of the data in x?
Each row in x is an observation with properties in size(x,2) dimensions. All this dimensions are used for clustering x rows.
However, when plotting the clusters, we cannot plot more than 2-3 dimensions so we try to represent each element with its key properties. I'm not sure that x(:,1),x(:,2) are the best option, but you have to choose 2 for a 2-D plot.
Usually you would have some property of interest that you want to plot. Have a look at the example in MATLAB doc: the fisheriris data has 4 different variables - the length and width measurements from the sepals and petals of three species of iris flowers. It is up to you to decide which you want to plot against each other (in the example they choosed Petal Length and Petal Width).
Here is a comparison between taking Petals measurements and Sepals measurements as the axis for plotting the grouping:

How to plot a probability density distribution graph in MATLAB?

I have about 10000 floating point data, and have read them into a single row matrix.
Now I would like to plot them and show their distribution, would there be some simple functions to do that?
plot() actually plots value with respect to data number...which is not what I want
bar() is similar to what I want, but actually I would like to lower the sample rate and merge neighbor bars which are close enough (e.g. one bar for 0.50-0.55, and one bar for 0.55-0.60, etc) instead of having one single bar for every single data sample.
would there be a function to calculate this distribution by dividing the range into small steps, and outputting the prob density in each step?
Thank you!
hist() would be best. It plots a histogram, with a lot of options which you can see by doc hist, or by checking the Matlab website. Options include a specified number of bins, or a range of bins. This will plot a histogram of 1000 normally random points, with 50 bins.
hist(randn(1000,1),50)

Finding defined peaks with Clusters in MATLAB

this is my problem:
I have the next data "A", which looks like:
As you can see, I have drawn with red circles the apparently peaks, the most defined are 2 and 7, I say that they are defined because its standard deviation is low in comparison with the other peaks (especially the second one).
What I need is a way (anyway) to get the values and the standard deviation of n peaks in a numeric array.
I have tried with "clusters", but I got no good results:
First of all, I used "kmeans" MATLAB function, and I realize that this algorithm doesn't group peaks as I need. As you can see in the picture above, in the red circle, that cluster has at less 3 or 4 peaks. And kmeans need that you set the number of clusters, and I need to identify it automatically.
I hope that anyone can give me some ideas, or a way to get better results, thanks.
Pd: I leave the data "A" in the next link.
https://drive.google.com/file/d/0B4WGV21GqSL5a2EyQ2l0SHZURzA/edit?usp=sharing
The problem is that your axes have very different meaning.
K-means optimizes variance. But variance in X is something entirely different than variance in Y, isn't it? Furthermore, each of these methods will split your data in both X and Y, whereas I assume you want the data to be partitioned on the X axis only.
I suggest the following: consider the Y axis to be a weight, and X axis to be a position.
Then perform weighted density estimation, and look for low density to separate your clusters.
I can't help you with MATLAB. I don't use it.
Mathematically, what you want to do is place a Gaussian at each point, with area Y and center X. Then find minima and maxima on the sum of these Gaussians. See Wikipedia, Kernel Density Estimation for details; except that you want to use the Y axis as weights. You could maybe also use 1/Y as standard deviation, if you don't want to use weights.

Controlled random number/dataset generation in MATLAB

Say, I have a cube of dimensions 1x1x1 spanning between coordinates (0,0,0) and (1,1,1). I want to generate a random set of points (assume 10 points) within this cube which are somewhat uniformly distributed (i.e. within certain minimum and maximum distance from each other and also not too close to the boundaries). How do I go about this without using loops? If this is not possible using vector/matrix operations then the solution with loops will also do.
Let me provide some more background details about my problem (This will help in terms of what I exactly need and why). I want to integrate a function, F(x,y,z), inside a polyhedron. I want to do it numerically as follows:
$F(x,y,z) = \sum_{i} F(x_i,y_i,z_i) \times V_i(x_i,y_i,z_i)$
Here, $F(x_i,y_i,z_i)$ is the value of function at point $(x_i,y_i,z_i)$ and $V_i$ is the weight. So to calculate the integral accurately, I need to identify set of random points which are not too close to each other or not too far from each other (Sorry but I myself don't know what this range is. I will be able to figure this out using parametric study only after I have a working code). Also, I need to do this for a 3D mesh which has multiple polyhedrons, hence I want to avoid loops to speed things out.
Check out this nice random vectors generator with fixed sum FEX file.
The code "generates m random n-element column vectors of values, [x1;x2;...;xn], each with a fixed sum, s, and subject to a restriction a<=xi<=b. The vectors are randomly and uniformly distributed in the n-1 dimensional space of solutions. This is accomplished by decomposing that space into a number of different types of simplexes (the many-dimensional generalizations of line segments, triangles, and tetrahedra.) The 'rand' function is used to distribute vectors within each simplex uniformly, and further calls on 'rand' serve to select different types of simplexes with probabilities proportional to their respective n-1 dimensional volumes. This algorithm does not perform any rejection of solutions - all are generated so as to already fit within the prescribed hypercube."
Use i=rand(3,10) where each column corresponds to one point, and each row corresponds to the coordinate in one axis (x,y,z)