I'm struggling to identified duplicated elements in my MongoDB records, here is my problem :
I have a Mongo collection named "elements".
Example of a record in this collection :
{
"_id" : ObjectId("5d1b2204e851271e80c824b6"),
"name" : "A",
"items" : [
{
"ref_id" : ObjectId("5d1b2204e851271e80c823d7"),
"_id" : ObjectId("5d1b2205e851271e80c82534")
},
{
"ref_id" : ObjectId("5d1b2204e851271e80c823d6"),
"_id" : ObjectId("5d1b2205e851271e80c82533")
},
{
"ref_id" : ObjectId("5d1b2204e851271e80c823d8"),
"_id" : ObjectId("5d1b2205e851271e80c82532")
},
{
"ref_id" : ObjectId("5d1b2204e851271e80c823d5"),
"_id" : ObjectId("5d1b3048e851271e80c826a5")
},
{
"ref_id" : ObjectId("5d1b2204e851271e80c823d5"),
"_id" : ObjectId("5d1b3048e851271e80c826ad")
}
]
}
I would like to identify records where the array "items" contains objects with the same "ref_id".
In my example we can see that the last two objects of the "items" array have the same "ref_id" : ObjectId("5d1b2204e851271e80c823d5").
I tried a bunch of aggregate function but unfortunately couldn't came out with a solution.
The following query can get us the expected output:
db.elements.aggregate([
{
$unwind:"$items"
},
{
$group:{
"_id":"$_id",
"root":{
$first:"$$ROOT"
},
"items":{
$push:"$items"
},
"distinctItems":{
$addToSet: "$items.ref_id"
}
}
},
{
$match:{
$expr:{
$ne:[
{
$size:"$items"
},
{
$size:"$distinctItems"
}
]
}
}
},
{
$addFields:{
"root.items":"$items"
}
},
{
$replaceRoot:{
"newRoot":"$root"
}
}
]).pretty()
Data set:
{
"_id" : ObjectId("5d1b2204e851271e80c824b6"),
"name" : "A",
"items" : [
{
"ref_id" : ObjectId("5d1b2204e851271e80c823d7"),
"_id" : ObjectId("5d1b2205e851271e80c82534")
},
{
"ref_id" : ObjectId("5d1b2204e851271e80c823d6"),
"_id" : ObjectId("5d1b2205e851271e80c82533")
},
{
"ref_id" : ObjectId("5d1b2204e851271e80c823d8"),
"_id" : ObjectId("5d1b2205e851271e80c82532")
},
{
"ref_id" : ObjectId("5d1b2204e851271e80c823d5"),
"_id" : ObjectId("5d1b3048e851271e80c826a5")
},
{
"ref_id" : ObjectId("5d1b2204e851271e80c823d5"),
"_id" : ObjectId("5d1b3048e851271e80c826ad")
}
]
}
{
"_id" : ObjectId("5d654b9d7d0ab652c42315f2"),
"name" : "B",
"items" : [
{
"ref_id" : ObjectId("5d1b2204e851271e80c823d7"),
"_id" : ObjectId("5d1b2205e851271e80c82534")
},
{
"ref_id" : ObjectId("5d1b2204e851271e80c823d6"),
"_id" : ObjectId("5d1b2205e851271e80c82533")
},
{
"ref_id" : ObjectId("5d1b2204e851271e80c823d8"),
"_id" : ObjectId("5d1b2205e851271e80c82532")
}
]
}
Output:
{
"_id" : ObjectId("5d1b2204e851271e80c824b6"),
"name" : "A",
"items" : [
{
"ref_id" : ObjectId("5d1b2204e851271e80c823d7"),
"_id" : ObjectId("5d1b2205e851271e80c82534")
},
{
"ref_id" : ObjectId("5d1b2204e851271e80c823d6"),
"_id" : ObjectId("5d1b2205e851271e80c82533")
},
{
"ref_id" : ObjectId("5d1b2204e851271e80c823d8"),
"_id" : ObjectId("5d1b2205e851271e80c82532")
},
{
"ref_id" : ObjectId("5d1b2204e851271e80c823d5"),
"_id" : ObjectId("5d1b3048e851271e80c826a5")
},
{
"ref_id" : ObjectId("5d1b2204e851271e80c823d5"),
"_id" : ObjectId("5d1b3048e851271e80c826ad")
}
]
}
Explanation: We are populating an array of distinct ref_id from each document and matching if the size of the populated array is equal to the size of actual items array.
Related
I am having problems aggregating my Product Document in MongoDB.
My Product Document is:
{
"_id" : ObjectId("5d81171c2c69f45ef459e0af"),
"type" : "T-Shirt",
"name" : "Panda",
"description" : "Panda's are cool.",
"image" : ObjectId("5d81171c2c69f45ef459e0ad"),
"created_at" : ISODate("2019-09-17T18:25:48.026+01:00"),
"is_featured" : false,
"sizes" : [
"XS",
"S",
"M",
"L",
"XL"
],
"tags" : [ ],
"pricing" : {
"price" : 26,
"sale_price" : 8
},
"categories" : [
ObjectId("5d81171b2c69f45ef459e086"),
ObjectId("5d81171b2c69f45ef459e087")
],
"sku" : "5d81171c2c69f45ef459e0af"
},
And my Category Document is:
{
"_id" : ObjectId("5d81171b2c69f45ef459e087"),
"name" : "Art",
"description" : "These items are our artsy options.",
"created_at" : ISODate("2019-09-17T18:25:47.196+01:00")
},
My aim is to perform aggregation on the Product Document in order to count the number of items within each Category. So I have the Category "Art", I need to count the products are in the "Art" Category:
My current aggregate:
db.product.aggregate(
{ $unwind : "$categories" },
{
$group : {
"_id" : { "name" : "$name" },
"doc" : { $push : { "category" : "$categories" } },
}
},
{ $unwind : "$doc" },
{
$project : {
"_id" : 0,
"name" : "$name",
"category" : "$doc.category"
}
},
{
$group : {
"_id" : "$category",
"name": { "$first": "$name" },
"items_in_cat" : { $sum : 1 }
}
},
{ "$sort" : { "items_in_cat" : -1 } },
)
Which does actually work but not as I need:
{
"_id" : ObjectId("5d81171b2c69f45ef459e082"),
"name" : null, // Why is the name of the category no here?
"items_in_cat" : 4
},
As we can see the name is null. How can I aggregate the output to be:
{
"_id" : ObjectId("5d81171b2c69f45ef459e082"),
"name" : "Art",
"items_in_cat" : 4
},
We need to use $lookup to fetch the name from Category collection.
The following query can get us the expected output:
db.product.aggregate([
{
$unwind:"$categories"
},
{
$group:{
"_id":"$categories",
"items_in_cat":{
$sum:1
}
}
},
{
$lookup:{
"from":"category",
"let":{
"id":"$_id"
},
"pipeline":[
{
$match:{
$expr:{
$eq:["$_id","$$id"]
}
}
},
{
$project:{
"_id":0,
"name":1
}
}
],
"as":"categoryLookup"
}
},
{
$unwind:{
"path":"$categoryLookup",
"preserveNullAndEmptyArrays":true
}
},
{
$project:{
"_id":1,
"name":{
$ifNull:["$categoryLookup.name","NA"]
},
"items_in_cat":1
}
}
]).pretty()
Data set:
Collection: product
{
"_id" : ObjectId("5d81171c2c69f45ef459e0af"),
"type" : "T-Shirt",
"name" : "Panda",
"description" : "Panda's are cool.",
"image" : ObjectId("5d81171c2c69f45ef459e0ad"),
"created_at" : ISODate("2019-09-17T17:25:48.026Z"),
"is_featured" : false,
"sizes" : [
"XS",
"S",
"M",
"L",
"XL"
],
"tags" : [ ],
"pricing" : {
"price" : 26,
"sale_price" : 8
},
"categories" : [
ObjectId("5d81171b2c69f45ef459e086"),
ObjectId("5d81171b2c69f45ef459e087")
],
"sku" : "5d81171c2c69f45ef459e0af"
}
Collection: category
{
"_id" : ObjectId("5d81171b2c69f45ef459e086"),
"name" : "Art",
"description" : "These items are our artsy options.",
"created_at" : ISODate("2019-09-17T17:25:47.196Z")
}
{
"_id" : ObjectId("5d81171b2c69f45ef459e087"),
"name" : "Craft",
"description" : "These items are our artsy options.",
"created_at" : ISODate("2019-09-17T17:25:47.196Z")
}
Output:
{
"_id" : ObjectId("5d81171b2c69f45ef459e087"),
"items_in_cat" : 1,
"name" : "Craft"
}
{
"_id" : ObjectId("5d81171b2c69f45ef459e086"),
"items_in_cat" : 1,
"name" : "Art"
}
I have datas of following format collection(projects) inside my database:
{ "_id" : ObjectId("5981a80f223e491a58230e5d"), "id" : 2, "name" : "gbqplhlqxzwl", "managerId" : 65151, "startDate" : "03.11.1999", "finishDate" : "02.01.2003", "projectStatus" : "POSTPONED", "participants" : [ ], "estimatedBudget" : 6017891.811079914 }
{ "_id" : ObjectId("5981a80f223e491a58230e5e"), "id" : 3, "name" : "erfekfsdgryu", "managerId" : 83749, "startDate" : "07.07.2007", "finishDate" : "26.12.2027", "projectStatus" : "POSTPONED", "participants" : [ 19229, 81856, 79270, 5509, 70344, 39424 ], "estimatedBudget" : 3086213.8981674756 }
{ "_id" : ObjectId("5981a80f223e491a58230e5f"), "id" : 1, "name" : "jvbzobhppntd", "managerId" : 18925, "startDate" : "29.04.1999", "finishDate" : "13.10.2008", "projectStatus" : "OPEN", "participants" : [ 46100, 96968, 6676, 56121, 4716, 68901, 43990, 48587, 62547, 30292, 65153, 17551, 27083, 20261, 27097, 50036, 86585, 69890, 18790, 22592, 60774, 93709, 78471, 27157, 4328, 36501, 47296, 16831 ], "estimatedBudget" : 3581496.7068344904 }
{ "_id" : ObjectId("5981a80f223e491a58230e60"), "id" : 4, "name" : "cdspkkqwvwld", "managerId" : 62042, "startDate" : "13.03.1998", "finishDate" : "20.06.2007", "projectStatus" : "OPEN", "participants" : [ 53480, 60897, 23677, 22064, 60807, 66637, 84609, 28378, 87143, 27675, 79283, 94992, 20429, 48769, 91671, 41747, 21651, 91134, 41684, 57228, 51949, 18756, 45679, 87781, 67287, 6902, 27526 ], "estimatedBudget" : 2126283.953787842 }
....
I need to find the busiest employee and list all his projects.
participants array contains employee ids who participate in the project.
I use the following query to find the busiest employee:
db.projects.aggregate(
{
$unwind: '$participants'
},
{
$addFields: {
count: 1
}
},
{
$group: {
_id : '$participants',
participation_count : {
'$sum':'$count'
}
}
},
{
$sort:{participation_count:-1}
},
{
$limit:1
}
)
and this work correctly. But I have no ideas how to list all his projects.
any ideas?
db.projects.aggregate(
[
{
$unwind: '$participants'
},
{
$addFields: {
count: 1
}
},
{
$group: {
_id : '$participants',
participation_count : {'$sum':'$count'},
projectId : {$push: '$id'}
}
},
{
$sort:{participation_count:-1}
},
{
$limit:1
}
],
{
allowDiskUse:true
}
)
I am newbie to mongo, i am trying to take the group by values in a subdocument, and having the mongo collection structure as like :
{
"_id" : ObjectId("589d4e4b270f8b1635d400b1"),
"myShopId" : 439,
"products" : [
{
"productId" : "1234",
"productName" : "sambarpowder 500 gm",
"productCategory" : "masala",
"mrp" : "90",
"_id" : ObjectId("589d595f6da20b72fe006ea9")
},
{
"productId" : "5678",
"productName" : "moong dhal 200 gms",
"productCategory" : "dhal",
"mrp" : "38 ",
"_id" : ObjectId("589d595f6da20b72fe006eaa")
},
{
"productId" : "5678",
"productName" : "moong dhal 200 gms",
"productCategory" : "dhal",
"mrp" : "38 ",
"_id" : ObjectId("589d595f6da20b72fe006eaa")
}
],
"isAlive" : 1,
"__v" : 3
}
Here, I want to do group by in this.
for eg in mysql:
select productCategory from products where shopId = '439' groupby productCategory
How can i achieve the group by in mongo sub document
My Expected output is like :
category : [{
productCategory : masala
_id : ObjectId("589d595f6da20b72fe006ea9")
},
{
productCategory : dhal
_id : ObjectId("589d595f6da20b72fe006eaa")
}
]
Hope this will help,
db.test.aggregate([{
$match: {
myShopId: 439
}
}, {
$unwind: "$products"
}, {
$group: {
_id: {
"productCategory": "$products.productCategory"
},
"id": {
$first: "$products._id"
}
}
}])
Output:
{ "_id" : { "productCategory" : "dhal" }, "id" : ObjectId("589d595f6da20b72fe006eaa") }
{ "_id" : { "productCategory" : "masala" }, "id" : ObjectId("589d595f6da20b72fe006ea9") }
this is my data :
> db.bookmarks.find({"userId" : "56b9b74bf976ab70ff6b9999"}).pretty()
{
"_id" : ObjectId("56c2210fee4a33579f4202dd"),
"userId" : "56b9b74bf976ab70ff6b9999",
"items" : [
{
"itemId" : "28",
"timestamp" : "2016-02-12T18:07:28Z"
},
{
"itemId" : "29",
"timestamp" : "2016-02-12T18:07:29Z"
},
{
"itemId" : "30",
"timestamp" : "2016-02-12T18:07:30Z"
},
{
"itemId" : "31",
"timestamp" : "2016-02-12T18:07:31Z"
},
{
"itemId" : "32",
"timestamp" : "2016-02-12T18:07:32Z"
},
{
"itemId" : "33",
"timestamp" : "2016-02-12T18:07:33Z"
},
{
"itemId" : "34",
"timestamp" : "2016-02-12T18:07:34Z"
}
]
}
I want to have something like (actually i hope the _id can become userId too) :
{
"_id" : "56b9b74bf976ab70ff6b9999",
"items" : [
{ "itemId": "32", "timestamp": "2016-02-12T18:07:32Z" },
{ "itemId": "31", "timestamp": "2016-02-12T18:07:31Z" },
{ "itemId": "30", "timestamp": "2016-02-12T18:07:30Z" }
]
}
What I have now :
> db.bookmarks.aggregate(
... { $match: { "userId" : "56b9b74bf976ab70ff6b9999" } },
... { $unwind: '$items' },
... { $sort: { 'items.timestamp': -1} },
... { $skip: 2 },
... { $limit: 3},
... { $group: { '_id': '$userId' , items: { $push: '$items.itemId' } } }
... ).pretty()
{ "_id" : "56b9b74bf976ab70ff6b9999", "items" : [ "32", "31", "30" ] }
i tried to read the document in mongo and find out i can $push, but somehow i cannot find a way to push such object, which is not defined anywhere in the whole object. I want to have the timestamp also.. but i don't know how should i modified the $group (or others??) to do so. thanks for helping!
This code, which I tested in the MongoDB 3.2.1 shell, should give you the output format that you want:
> db.bookmarks.aggregate(
{ "$match" : { "userId" : "Ursula" } },
{ "$unwind" : "$items" },
{ "$sort" : { "items.timestamp" : -1 } },
{ "$skip" : 2 },
{ "$limit" : 3 },
{ "$group" : { "_id" : "$userId", items: { "$push" : { "myPlace" : "$items.itemId", "myStamp" : "$items.timestamp" } } } } ).pretty()
Running the above will produce this output:
{
"_id" : "Ursula",
"items" : [
{
"myPlace" : "52",
"myStamp" : ISODate("2016-02-13T18:07:32Z")
},
{
"myPlace" : "51",
"myStamp" : ISODate("2016-02-13T18:07:31Z")
},
{
"myPlace" : "50",
"myStamp" : ISODate("2016-02-13T18:07:30Z")
}
]
}
In MongoDB version 3.2.x, you can also use the $out operator in the very last stage of the aggregation pipeline, and have the output of the aggregation query written to a collection. Here is the code I used:
> db.bookmarks.aggregate(
{ "$match" : { "userId" : "Ursula" } },
{ "$unwind" : "$items" },
{ "$sort" : { "items.timestamp" : -1 } },
{ "$skip" : 2 },
{ "$limit" : 3 },
{ "$group" : { "_id" : "$userId", items: { "$push" : { "myPlace" : "$items.itemId", "myStamp" : "$items.timestamp" } } } },
{ "$out" : "ursula" } )
This gives me a collection named "ursula":
> show collections
ursula
and I can query that collection:
> db.ursula.find().pretty()
{
"_id" : "Ursula",
"items" : [
{
"myPlace" : "52",
"myStamp" : ISODate("2016-02-13T18:07:32Z")
},
{
"myPlace" : "51",
"myStamp" : ISODate("2016-02-13T18:07:31Z")
},
{
"myPlace" : "50",
"myStamp" : ISODate("2016-02-13T18:07:30Z")
}
]
}
>
Last of all, this is the input document I used in the aggregation query. You can compare this document to how I coded the aggregation query to see how I built the new items array.
> db.bookmarks.find( { "userId" : "Ursula" } ).pretty()
{
"_id" : ObjectId("56c240ed55f2f6004dc3b25c"),
"userId" : "Ursula",
"items" : [
{
"itemId" : "48",
"timestamp" : ISODate("2016-02-13T18:07:28Z")
},
{
"itemId" : "49",
"timestamp" : ISODate("2016-02-13T18:07:29Z")
},
{
"itemId" : "50",
"timestamp" : ISODate("2016-02-13T18:07:30Z")
},
{
"itemId" : "51",
"timestamp" : ISODate("2016-02-13T18:07:31Z")
},
{
"itemId" : "52",
"timestamp" : ISODate("2016-02-13T18:07:32Z")
},
{
"itemId" : "53",
"timestamp" : ISODate("2016-02-13T18:07:33Z")
},
{
"itemId" : "54",
"timestamp" : ISODate("2016-02-13T18:07:34Z")
}
]
}
Given this dataset and this mongodb, how to properly convert this aggregation into Mongoose?
I have included, the code using mongoose, which works but I want to know if this is the right way of doing it and that if this aggregation can be improved?
Thanks.
db.cars.aggregate(
//De-normalized the nested array of accounts
{"$unwind": "$accounts"},
//De-normalized the nested array of cars
{"$unwind": "$accounts.cars"},
//match carId to 3C
{"$match": {"accounts.cars.carId" : "3C"}},
//Project the accounts.cars object only
{"$project" : {"accounts.cars" : 1}}
).pretty();
The Mongoose version that I'm trying to improve:
Car.aggregate()
.unwind('accounts')
.unwind('accounts.cars')
.match({'accounts.cars.carId' : "3C"})
.project({"accounts.cars": 1, _id: 0})
.exec(function (err, carsObj) {});
and the dataset (cars):
{
"_id" : ObjectId("56223329b64f07a40ef1c15c"),
"username" : "john",
"email" : "john#john.com",
"accounts" : [
{
"_id" : ObjectId("56322329b61f07a40ef1c15d"),
"cars" : [
{
"carId" : "6A",
"_id" : ObjectId("56323329b64f07a40ef1c15e")
},
{
"carId" : "6B",
"_id" : ObjectId("56323329b64f07a40ef1c15e")
}
]
}
]
},
{
"_id" : ObjectId("56223125b64f07a40ef1c15c"),
"username" : "paul",
"email" : "paul#paul.com",
"accounts" : [
{
"_id" : ObjectId("5154729b61f07a40ef1c15d"),
"cars" : [
{
"carId" : "5B",
"_id" : ObjectId("56323329854f07a40ef1c15e")
}
]
},
{
"_id" : ObjectId("56322117b61f07a40ef1c15d"),
"cars" : [
{
"carId" : "6G",
"_id" : ObjectId("51212929b64f07a40ef1c15e")
},
{
"carId" : "3C",
"_id" : ObjectId("51273329b64f07a40ef1c15e")
},
{
"carId" : "4N",
"_id" : ObjectId("51241279b64f07a40ef1c15e")
}
]
}
]
}
What the aggregation returns is:
[
{ accounts:
{ cars:
{
"carId" : "3C",
"_id" : ObjectId("51273329b64f07a40ef1c15e")
}
}
}
]