Getting the mode from an RDD - scala

I would like to get the mode (the most common number) from an rdd using Spark + Scala.
I can get it doing the following but I think it could be a better way to calculate this. The most important thing is if more than one value has the same number of repetition, I need to return both of them.
Let's see my example code:
val l = List(3,4,4,3,3,7,7,7,9)
val rdd = spark.sparkContext.parallelize(l)
val grouped = rdd.map (e => (e, 1)).groupBy(_._1).map(e=> (e._1, e._2.size))
val maxRep = grouped.collect().maxBy(_._2)._2
val mode = grouped.filter(e => e._2 == maxRep).map(e => e._1).collect
And the result is right:
Array[Int] = Array(3, 7)
but is there a better way to do this? I mean considering the performance because the original RDD would be much bigger than this.

This should work and be a little bit more efficient.
(only if you are sure the total number of elements is small)
val counted = rdd.countByValue()
val max = counted.valuesIterator.max
val maxElements = count.collect { case (k, v) if (v == max) => k }
If there could be many elements, consider this alternative which is memory safe.
val counted = rdd.map(x => (x, 1L)).reduceByKey(_ + _).cache()
val max = counted.values.max
val maxElements = counted.map { case (k, v) => (v, k) }.lookup(max)

How about get the max key-value pair from a double groupBy? This works even better for bigger data size.
rdd.groupBy(identity).mapValues(_.size).groupBy(_._2).max
// res1: (Int, Iterable[(Int, Int)]) = (3,CompactBuffer((3,3), (7,3)))
To get the element
rdd.groupBy(identity).mapValues(_.size).groupBy(_._2).max._2.map(_._1)
// res4: Iterable[Int] = List(3, 7)
The first groupBy will get element into (element -> count) with type Map[Int, Long], the second groupBy will group (element -> count) by count, like (count -> Iterable((element, count)), then simply max to get the key-value pair with the maximum key value, which is the count.

Related

How to find the common values in key value pairs and put it as value in all pairs?

How can I get the intersection of values in key value pairs?
I have pairs:
(p, Set(n))
in which I used reduceByKey and finally got:
(p1, Set(n1, n2)) (p2, Set(n1, n2, n3)) (p3, Set(n2, n3))
What I want is to find n that exist in all of the pairs and put them as value. For the above data, the result would by
(p1, Set(n2)) (p2, Set(n2)), (p3, Set(n2))
As long as I searched, there is no reduceByValue in spark. The only function that seemed closer to what i want was reduce() but it didn't work as the result was only one key value pair ((p3, Set(n2))).
Is there any way to solve it? Or should i think something else from the start?
Code:
val rRdd = inputFile.map(x => (x._1, Set(x._2)).reduceByKey(_++_)
val wrongRdd = rRdd.reduce{(x, y) => (x._1, x._2.intersect(y._2))}
I can see why wrongRdd is not correct, I just put it to show how (p3, Set(n2)) resulted from.
You can first reduce the sets to their intersection (say, s), then replace (k, v) with (k, s):
val rdd = sc.parallelize(Seq(
("p1", Set("n1", "n2")),
("p2", Set("n1", "n2", "n3")),
("p3", Set("n2", "n3"))
))
val s = rdd.map(_._2).reduce(_ intersect _)
// s: scala.collection.immutable.Set[String] = Set(n2)
rdd.map{ case (k, v) => (k, s) }.collect
// res1: Array[(String, scala.collection.immutable.Set[String])] = Array(
// (p1,Set(n2)), (p2,Set(n2)), (p3,Set(n2))
// )

Spark - calculate max ocurrence per day-event

I have the following RDD[String]:
1:AAAAABAAAAABAAAAABAAABBB
2:BBAAAAAAAAAABBAAAAAAAAAA
3:BBBBBBBBAAAABBAAAAAAAAAA
The first number is supposed to be days and the following characters are events.
I have to calculate the day where each event has the maximum occurrence.
The expected result for this dataset should be:
{ "A" -> Day2 , "B" -> Day3 }
(A has repeated 10 times in day2 and b 10 times in day3)
I am splitting the original dataset
val foo = rdd.map(_.split(":")).map(x => (x(0), x(1).split("")) )
What could be the best implementation for count and aggregation?
Any help is appreciated.
This should do the trick:
import org.apache.spark.sql.functions._
val rdd = sqlContext.sparkContext.makeRDD(Seq(
"1:AAAAABAAAAABAAAAABAAABBB",
"2:BBAAAAAAAAAABBAAAAAAAAAA",
"3:BBBBBBBBAAAABBAAAAAAAAAA"
))
val keys = Seq("A", "B")
val seqOfMaps: RDD[(String, Map[String, Int])] = rdd.map{str =>
val split = str.split(":")
(s"Day${split.head}", split(1).groupBy(a => a.toString).mapValues(_.length))
}
keys.map{key => {
key -> seqOfMaps.mapValues(_.get(key).get).sortBy(a => -a._2).first._1
}}.toMap
The processing that need to be done consist in transforming the data into a rdd that is easy to apply on functions like: find the maximum for a list
I will try to explain step by step
I've used dummy data for "A" and "B" chars.
The foo rdd is the first step it will give you RDD[(String, Array[String])]
Let's extract each char for the Array[String]
val res3 = foo.map{case (d,s)=> (d, s.toList.groupBy(c => c).map{case (x, xs) => (x, xs.size)}.toList)}
(1,List((A,18), (B,6)))
(2,List((A,20), (B,4)))
(3,List((A,14), (B,10)))
Next we will flatMap over values to expand our rdd by char
res3.flatMapValues(list => list)
(3,(A,14))
(3,(B,10))
(1,(A,18))
(2,(A,20))
(2,(B,4))
(1,(B,6))
Rearrange the rdd in order to look better
res5.map{case (d, (s, c)) => (s, c, d)}
(A,20,2)
(B,4,2)
(A,18,1)
(B,6,1)
(A,14,3)
(B,10,3)
Now we are groupy by char
res7.groupBy(_._1)
(A,CompactBuffer((A,18,1), (A,20,2), (A,14,3)))
(B,CompactBuffer((B,6,1), (B,4,2), (B,10,3)))
Finally we are taking the maxium count for each row
res9.map{case (s, list) => (s, list.maxBy(_._2))}
(B,(B,10,3))
(A,(A,20,2))
Hope this help
Previous answers are good, but I prefer such solution:
val data = Seq(
"1:AAAAABAAAAABAAAAABAAABBB",
"2:BBAAAAAAAAAABBAAAAAAAAAA",
"3:BBBBBBBBAAAABBAAAAAAAAAA"
)
val initialRDD = sparkContext.parallelize(data)
// to tuples like (1,'A',18)
val charCountRDD = initialRDD.flatMap(s => {
val parts = s.split(":")
val charCount = parts(1).groupBy(i => i).mapValues(_.length)
charCount.map(i => (parts(0), i._1, i._2))
})
// group by character, and take max value from grouped collection
val result = charCountRDD.groupBy(i => i._2).map(k => k._2.maxBy(z => z._3))
result.foreach(println(_))
Result is:
(3,B,10)
(2,A,20)

RDD split and do aggregation on new RDDs

I have an RDD of (String,String,Int).
I want to reduce it based on the first two strings
And Then based on the first String I want to group the (String,Int) and sort them
After sorting I need to group them into small groups each containing n elements.
I have done the code below. The problem is the number of elements in the step 2 is very large for a single key
and the reduceByKey(x++y) takes a lot of time.
//Input
val data = Array(
("c1","a1",1), ("c1","b1",1), ("c2","a1",1),("c1","a2",1), ("c1","b2",1),
("c2","a2",1), ("c1","a1",1), ("c1","b1",1), ("c2","a1",1))
val rdd = sc.parallelize(data)
val r1 = rdd.map(x => ((x._1, x._2), (x._3)))
val r2 = r1.reduceByKey((x, y) => x + y ).map(x => ((x._1._1), (x._1._2, x._2)))
// This is taking long time.
val r3 = r2.mapValues(x => ArrayBuffer(x)).reduceByKey((x, y) => x ++ y)
// from the list I will be doing grouping.
val r4 = r3.map(x => (x._1 , x._2.toList.sorted.grouped(2).toList))
Problem is the "c1" has lot of unique entries like b1 ,b2....million and reduceByKey is killing time because all the values are going to single node.
Is there a way to achieve this more efficiently?
// output
Array((c1,List(List((a1,2), (a2,1)), List((b1,2), (b2,1)))), (c2,List(List((a1,2), (a2,1)))))
There at least few problems with a way you group your data. The first problem is introduced by
mapValues(x => ArrayBuffer(x))
It creates a large amount of mutable objects which provide no additional value since you cannot leverage their mutability in the subsequent reduceByKey
reduceByKey((x, y) => x ++ y)
where each ++ creates a new collection and neither argument can be safely mutated. Since reduceByKey applies map side aggregation situation is even worse and pretty much creates GC hell.
Is there a way to achieve this more efficiently?
Unless you have some deeper knowledge about data distribution which can be used to define smarter partitioner the simplest improvement is to replace mapValues + reduceByKey with simple groupByKey:
val r3 = r2.groupByKey
It should be also possible to use a custom partitioner for both reduceByKey calls and mapPartitions with preservesPartitioning instead of map.
class FirsElementPartitioner(partitions: Int)
extends org.apache.spark.Partitioner {
def numPartitions = partitions
def getPartition(key: Any): Int = {
key.asInstanceOf[(Any, Any)]._1.## % numPartitions
}
}
val r2 = r1
.reduceByKey(new FirsElementPartitioner(8), (x, y) => x + y)
.mapPartitions(iter => iter.map(x => ((x._1._1), (x._1._2, x._2))), true)
// No shuffle required here.
val r3 = r2.groupByKey
It requires only a single shuffle and groupByKey is simply a local operations:
r3.toDebugString
// (8) MapPartitionsRDD[41] at groupByKey at <console>:37 []
// | MapPartitionsRDD[40] at mapPartitions at <console>:35 []
// | ShuffledRDD[39] at reduceByKey at <console>:34 []
// +-(8) MapPartitionsRDD[1] at map at <console>:28 []
// | ParallelCollectionRDD[0] at parallelize at <console>:26 []

Summing items within a Tuple

Below is a data structure of List of tuples, ot type List[(String, String, Int)]
val data3 = (List( ("id1" , "a", 1), ("id1" , "a", 1), ("id1" , "a", 1) , ("id2" , "a", 1)) )
//> data3 : List[(String, String, Int)] = List((id1,a,1), (id1,a,1), (id1,a,1),
//| (id2,a,1))
I'm attempting to count the occurences of each Int value associated with each id. So above data structure should be converted to List((id1,a,3) , (id2,a,1))
This is what I have come up with but I'm unsure how to group similar items within a Tuple :
data3.map( { case (id,name,num) => (id , name , num + 1)})
//> res0: List[(String, String, Int)] = List((id1,a,2), (id1,a,2), (id1,a,2), (i
//| d2,a,2))
In practice data3 is of type spark obj RDD , I'm using a List in this example for testing but same solution should be compatible with an RDD . I'm using a List for local testing purposes.
Update : based on following code provided by maasg :
val byKey = rdd.map({case (id1,id2,v) => (id1,id2)->v})
val byKeyGrouped = byKey.groupByKey
val result = byKeyGrouped.map{case ((id1,id2),values) => (id1,id2,values.sum)}
I needed to amend slightly to get into format I expect which is of type
.RDD[(String, Seq[(String, Int)])]
which corresponds to .RDD[(id, Seq[(name, count-of-names)])]
:
val byKey = rdd.map({case (id1,id2,v) => (id1,id2)->v})
val byKeyGrouped = byKey.groupByKey
val result = byKeyGrouped.map{case ((id1,id2),values) => ((id1),(id2,values.sum))}
val counted = result.groupedByKey
In Spark, you would do something like this: (using Spark Shell to illustrate)
val l = List( ("id1" , "a", 1), ("id1" , "a", 1), ("id1" , "a", 1) , ("id2" , "a", 1))
val rdd = sc.parallelize(l)
val grouped = rdd.groupBy{case (id1,id2,v) => (id1,id2)}
val result = grouped.map{case ((id1,id2),values) => (id1,id2,value.foldLeft(0){case (cumm, tuple) => cumm + tuple._3})}
Another option would be to map the rdd into a PairRDD and use groupByKey:
val byKey = rdd.map({case (id1,id2,v) => (id1,id2)->v})
val byKeyGrouped = byKey.groupByKey
val result = byKeyGrouped.map{case ((id1,id2),values) => (id1,id2,values.sum)}
Option 2 is a slightly better option when handling large sets as it does not replicate the id's in the cummulated value.
This seems to work when I use scala-ide:
data3
.groupBy(tupl => (tupl._1, tupl._2))
.mapValues(v =>(v.head._1,v.head._2, v.map(_._3).sum))
.values.toList
And the result is the same as required by the question
res0: List[(String, String, Int)] = List((id1,a,3), (id2,a,1))
You should look into List.groupBy.
You can use the id as the key, and then use the length of your values in the map (ie all the items sharing the same id) to know the count.
#vptheron has the right idea.
As can be seen in the docs
def groupBy[K](f: (A) ⇒ K): Map[K, List[A]]
Partitions this list into a map of lists according to some discriminator function.
Note: this method is not re-implemented by views. This means when applied to a view it will >always force the view and return a new list.
K the type of keys returned by the discriminator function.
f the discriminator function.
returns
A map from keys to lists such that the following invariant holds:
(xs partition f)(k) = xs filter (x => f(x) == k)
That is, every key k is bound to a list of those elements x for which f(x) equals k.
So something like the below function, when used with groupBy will give you a list with keys being the ids.
(Sorry, I don't have access to an Scala compiler, so I can't test)
def f(tupule: A) :String = {
return tupule._1
}
Then you will have to iterate through the List for each id in the Map and sum up the number of integer occurrences. That is straightforward, but if you still need help, ask in the comments.
The following is the most readable, efficient and scalable
data.map {
case (key1, key2, value) => ((key1, key2), value)
}
.reduceByKey(_ + _)
which will give a RDD[(String, String, Int)]. By using reduceByKey it means the summation will paralellize, i.e. for very large groups it will be distributed and summation will happen on the map side. Think about the case where there are only 10 groups but billions of records, using .sum won't scale as it will only be able to distribute to 10 cores.
A few more notes about the other answers:
Using head here is unnecessary: .mapValues(v =>(v.head._1,v.head._2, v.map(_._3).sum)) can just use .mapValues(v =>(v_1, v._2, v.map(_._3).sum))
Using a foldLeft here is really horrible when the above shows .map(_._3).sum will do: val result = grouped.map{case ((id1,id2),values) => (id1,id2,value.foldLeft(0){case (cumm, tuple) => cumm + tuple._3})}

How do I populate a list of objects with new values

Apologies: I'm well noob
I have an items class
class item(ind:Int,freq:Int,gap:Int){}
I have an ordered list of ints
val listVar = a.toList
where a is an array
I want a list of items called metrics where
ind is the (unique) integer
freq is the number of times that ind appears in list
gap is the minimum gap between ind and the number in the list before it
so far I have:
def metrics = for {
n <- 0 until 255
listVar filter (x == n) count > 0
}
yield new item(n, (listVar filter == n).count,0)
It's crap and I know it - any clues?
Well, some of it is easy:
val freqMap = listVar groupBy identity mapValues (_.size)
This gives you ind and freq. To get gap I'd use a fold:
val gapMap = listVar.sliding(2).foldLeft(Map[Int, Int]()) {
case (map, List(prev, ind)) =>
map + (ind -> (map.getOrElse(ind, Int.MaxValue) min ind - prev))
}
Now you just need to unify them:
freqMap.keys.map( k => new item(k, freqMap(k), gapMap.getOrElse(k, 0)) )
Ideally you want to traverse the list only once and in the course for each different Int, you want to increment a counter (the frequency) as well as keep track of the minimum gap.
You can use a case class to store the frequency and the minimum gap, the value stored will be immutable. Note that minGap may not be defined.
case class Metric(frequency: Int, minGap: Option[Int])
In the general case you can use a Map[Int, Metric] to lookup the Metric immutable object. Looking for the minimum gap is the harder part. To look for gap, you can use the sliding(2) method. It will traverse the list with a sliding window of size two allowing to compare each Int to its previous value so that you can compute the gap.
Finally you need to accumulate and update the information as you traverse the list. This can be done by folding each element of the list into your temporary result until you traverse the whole list and get the complete result.
Putting things together:
listVar.sliding(2).foldLeft(
Map[Int, Metric]().withDefaultValue(Metric(0, None))
) {
case (map, List(a, b)) =>
val metric = map(b)
val newGap = metric.minGap match {
case None => math.abs(b - a)
case Some(gap) => math.min(gap, math.abs(b - a))
}
val newMetric = Metric(metric.frequency + 1, Some(newGap))
map + (b -> newMetric)
case (map, List(a)) =>
map + (a -> Metric(1, None))
case (map, _) =>
map
}
Result for listVar: List[Int] = List(2, 2, 4, 4, 0, 2, 2, 2, 4, 4)
scala.collection.immutable.Map[Int,Metric] = Map(2 -> Metric(4,Some(0)),
4 -> Metric(4,Some(0)), 0 -> Metric(1,Some(4)))
You can then turn the result into your desired item class using map.toSeq.map((i, m) => new Item(i, m.frequency, m.minGap.getOrElse(-1))).
You can also create directly your Item object in the process, but I thought the code would be harder to read.