How to insert a structure within a structure - matlab

I have a 1x1 structure called imu_data.txyzrxyz1. It has one field called txyzrxyz1 and the value is 4877x7 double. I just want to "copy and paste" row 62 into row 63 (double up that row) so that the structure now becomes a 4878x7 structure. I've tried the following, with other versions without success:
extra_63 = imu_data.txyzrxyz1(63,:);
imu_data2.txyzrxyz1 = [{imu_data.txyzrxyz1(1:62,:) extra_63 imu_data.txyzrxyz1(63:end,:)}]
Thanks

You can index the row to duplicate twice while matrix indexing:
row_to_duplicate = 63;
yourdata = rand(100,10);
yourstruct.data = yourdata;
yourstruct.data = yourstruct.data([1:row_to_duplicate, row_to_duplicate:end],:)
So in case of 63, 1:row_to_duplicate will create a column vector from 1:63, and row_to_duplicate:end will create a column vector from 63:100 in this example. When combining these, 63 will occur twice, hence that row is duplicated.
You were almost there, you only had to get rid of the {}'s and put the data in the right orientation by using ; instead of a space between matrix entries to vertically concatenate instead of horizontally:
extra_63 = imu_data.txyzrxyz1(63,:);
imu_data2.txyzrxyz1 = [imu_data.txyzrxyz1(1:62,:); extra_63; imu_data.txyzrxyz1(63:end,:)]

Related

Remove rows from a matrix

I have the array "A" with values:
101 101
0 0
61.6320000000000 0.725754779522671
73.7000000000000 0.830301150185882
78.2800000000000 0.490917508345341
81.2640000000000 0.602561200211232
82.6880000000000 0.435568593909153
And I wish to remove this first row and retain the shape of the array (2 columns), thus creating the array
0 0
61.6320000000000 0.725754779522671
73.7000000000000 0.830301150185882
78.2800000000000 0.490917508345341
81.2640000000000 0.602561200211232
82.6880000000000 0.435568593909153
I have used A = A(A~=101); , which removes the values as required - however it packs the array down to one column.
The best way is:
A = A(2:end, :)
But you can also do
A(1,:) = []
however it is slightly less efficient (see Deleting matrix elements by = [] vs reassigning matrix)
If you are looking to delete rows that equal a certain number try
A = A(A(:,1)~=101,:)
Use all or any if you want to delete row if either all or any column equals your value:
A = A(all(A~=101,2),:)

Rows without repetitions - MATLAB

I have a matrix (4096x4) containing all possible combinations of four values taken from a pool of 8 numbers.
...
3 63 39 3
3 63 39 19
3 63 39 23
3 63 39 39
...
I am only interested in the rows of the matrix that contain four unique values. In the above section, for example, the first and last row should be removed, giving us -
...
3 63 39 19
3 63 39 23
...
My current solution feels inelegant-- basically, I iterate across every row and add it to a result matrix if it contains four unique values:
result = [];
for row = 1:size(matrix,1)
if length(unique(matrix(row,:)))==4
result = cat(1,result,matrix(row,:));
end
end
Is there a better way ?
Approach #1
diff and sort based approach that must be pretty efficient -
sortedmatrix = sort(matrix,2)
result = matrix(all(diff(sortedmatrix,[],2)~=0,2),:)
Breaking it down to few steps for explanation
Sort along the columns, so that the duplicate values in each row end up next to each other. We used sort for this task.
Find the difference between consecutive elements, which will catch those duplicate after sorting. diff was the tool for this purpose.
For any row with at least one zero indicates rows with duplicate rows. To put it other way, any row with no zero would indicate rows with no duplicate rows, which we are looking to have in the output. all got us the job done here to get a logical array of such matches.
Finally, we have used matrix indexing to select those rows from matrix to get the expected output.
Approach #2
This could be an experimental bsxfun based approach as it won't be memory-efficient -
matches = bsxfun(#eq,matrix,permute(matrix,[1 3 2]))
result = matrix(all(all(sum(matches,2)==1,2),3),:)
Breaking it down to few steps for explanation
Find a logical array of matches for every element against all others in the same row with bsxfun.
Look for "non-duplicity" by summing those matches along dim-2 of matches and then finding all ones elements along dim-2 and dim-3 getting us the same indexing array as had with our previous diff + sort based approach.
Use the binary indexing array to select the appropriate rows from matrix for the final output.
Approach #3
Taking help from MATLAB File-exchange's post combinator
and assuming you have the pool of 8 values in an array named pool8, you can directly get result like so -
result = pool8(combinator(8,4,'p'))
combinator(8,4,'p') basically gets us the indices for 8 elements taken 4 at once and without repetitions. We use these indices to index into the pool and get the expected output.
For a pool of a finite number this will work. Create is unique array, go through each number in pool, count the number of times it comes up in the row, and only keep IsUnique to 1 if there are either one or zero numbers found. Next, find positions where the IsUnique is still 1, extract those rows and we finish.
matrix = [3,63,39,3;3,63,39,19;3,63,39,23;3,63,39,39;3,63,39,39;3,63,39,39];
IsUnique = ones(size(matrix,1),1);
pool = [3,63,39,19,23,6,7,8];
for NumberInPool = 1:8
Temp = sum((matrix == pool(NumberInPool))')';
IsUnique = IsUnique .* (Temp<2);
end
UniquePositions = find(IsUnique==1);
result = matrix(UniquePositions,:)

Extracting rows from .mat table using for loop in MATLAB

What I have is a variable X which has values assigned to it in the form of a table of 9 columns and around 100 rows. Here is an example:
X =
Columns 1 through 7
-2.2869 -1.1168 0.1430 -4.0753 1.7620 -6.3229 -3.1997
-2.2504 -1.1022 0.2046 -3.9865 1.7423 -6.2172 -3.1231
-2.2138 -1.0876 0.2663 -3.8977 1.7226 -6.1115 -3.0465
-2.1772 -1.0730 0.3279 -3.8089 1.7029 -6.0058 -2.9700
I need to create a for loop that extracts the first r rows of the first 'p' colmuns. For example r=3 and p=4.
Any idea on how I can do that?
I suggest you don't use a for-loop, but rather index directly into the matrix:
out = X(1:r,1:p)
returns the first r rows and p columns of X.

Extract every fifth value from matrix

So I have 2d matrix and I want to extract every fifth value from the second column.
I know how to get all the values from the second column -
var = myMatrix(:,2);
But how can I only select every fifth value instead of all the values
Depending on exactly what "every fifth value" means, I think that what you want is:
var = myMatrix(5:5:end, 2);
which returns
var = [myMatrix(5,2); myMatrix(10,2); ...]
Leaving aside the mistake that sans481 has already pointed out to you, you would use array subscript triples. For example, if your array A was 8x8 then
A(2,2:3:8)
would pick out row 2, columns 2,3,8, only.

How to load a specially formatted data file into matlab?

I need to load a data file, test.dat, into Matlab. The contents of data file are like
*a682 1233~0.2
*a2345 233~0.8 345~0.2 4567~0.3
*a3457 345~0.9 34557~1.2 34578~0.2 9809~0.1 2345~2.9 23452~0.9 334557~1.2 234578~0.2 19809~0.1 23452~2.9 3452~0.9 4557~1.2 3578~0.2 92809~0.1 12345~2.9 232452~0.9 33557~1.6 23478~0.6 198099~2.1 234532~2.9 …
How to read this type of file into matlab, and use the terms, such as *2345 to identify a row, which links to corresponding terms, including 233~0.8 345~0.2 4567~0.3
Thanks.
Because each of the rows is a different size, you either have to make a cell array, a structure, or deal with adding NaN or zero to a matrix. I chose to use a cell array, hope it is ok! If someone is better with regexp than me please comment, the output cells are now not perfect (i.e. show 345~ instead of 345~0.9) but I am sure it is a minor fix. Here is the code:
datfile = 'test.dat';
text = fileread(datfile);
row1 = regexp(text,'*[a-z]?\d+','match');
data(:,1) = row1';
row2 = regexp(text,'*[a-z]?\d+','split');
row2 = [row2(:,2:end)'];
for i = 1:size(row2,1)
data{i,2} = regexp(row2{i},'\d+\S\d+\s','split');
end
What this creates is a cell array called data where the first column of every row is your *a682 id and the second column of each row is a cell with your data values. To get them you could use:
data{1}
to show the id
data{1,2}
to show the cell contents
data{1,2}{1}
to show the specific data point
This should work and is relatively simple!