I have a folder on HDFS like below containing ORC files:
/path/to/my_folder
It contains partitions:
/path/to/my_folder/dt=20190101
/path/to/my_folder/dt=20190103
/path/to/my_folder/dt=20190103
...
Now I need to process the data here using streaming.
A spark.readStream.format("orc").load("/path/to/my_folder") nicely works.
However, I do not want to process the whole table, but rather only start from a certain partition onwards similar to a certain kafka offset.
How can this be implemented? I.e. how can I specify the initial state where to read from.
Spark Structured Streaming File Source Starting Offset claims that there is no such feature.
Their suggestion to use: latestFirst is not desirable for my use-case, as I do not aim to build an always-on streaming application, but rather use Trigger.Once like a batch job with the nice streaming semantics of duplicate reduction and handling of late-arriving data
If this is not available, what would be a suitable workaround?
edit
Run warn-up stream with option("latestFirst", true) and
option("maxFilesPerTrigger", "1") with checkpoint, dummy sink and huge
processing time. This way, warm-up stream will save latest file
timestamp to checkpoint.
Run real stream with option("maxFileAge", "0"), real sink using the
same checkpoint location. In this case stream will process only newly
available files.
https://stackoverflow.com/a/51399134/2587904
building from this idea, let's look at an example:
# in bash
rm -rf data
mkdir -p data/dt=20190101
echo "1,1,1" >> data/dt=20190101/1.csv
echo "1,1,2" >> data/dt=20190101/2.csv
mkdir data/dt=20190102
echo "1,2,1" >> data/dt=20190102/1.csv
echo "1,2,2" >> data/dt=20190102/2.csv
mkdir data/dt=20190103
echo "1,3,1" >> data/dt=20190103/1.csv
echo "1,3,2" >> data/dt=20190103/2.csv
mkdir data/dt=20190104
echo "1,4,1" >> data/dt=20190104/1.csv
echo "1,4,2" >> data/dt=20190104/2.csv
spark-shell --conf spark.sql.streaming.schemaInference=true
// from now on in scala
val df = spark.readStream.csv("data")
df.printSchema
val query = df.writeStream.format("console").start
query.stop
// cleanup the data and start from scratch.
// this time instead of outputting to the console, write to file
val query = df.writeStream.format("csv")
.option("path", "output")
.option("checkpointLocation", "checkpoint")
val started = query.start
// in bash
# generate new data
mkdir data/dt=20190105
echo "1,5,1" >> data/dt=20190105/1.csv
echo "1,5,2" >> data/dt=20190105/2.csv
echo "1,4,3" >> data/dt=20190104/3.csv
// in scala
started.stop
// cleanup the output, start later on with custom checkpoint
//bash: rm -rf output/*
val started = query.start
// bash
echo "1,4,3" >> data/dt=20190104/4.csv
started.stop
// *****************
//bash: rm -rf output/*
Everything works as intended. The operation picks up where the checkpoint marks the last processed file.
How can a checkpoint definition be generated by hands such as all files in dt=20190101 and dt=20190102 have been processed and no late-arriving data is tolerated there anymore and the processing shall continue with all the files from dt=20190103 onwards?
I see that spark generates:
commits
metadata
offsets
sources
_spark-metadata
files and folders.
So far I only know that _spark-metadata can be ignored to set an initial state / checkpoint.
But have not yet figured out (from the other files) which minimal values need to be present so processing picks up from dt=20190103 onwards.
edit 2
By now I know that:
commits/0 needs to be present
metadata needs to be present
offsets needs to be present
but can be very generic:
v1
{"batchWatermarkMs":0,"batchTimestampMs":0,"conf":{"spark.sql.shuffle.partitions":"200"}}
{"logOffset":0}
When I tried to remove one of the already processed and committed files from sources/0/0, the query still runs but: not only the new data is processed larger than the existing committed data, but any data, in particular, the files I just removed from the log.
How can I change this behavior to only process data more current than the initial state?
edit 3
The docs (https://jaceklaskowski.gitbooks.io/spark-structured-streaming/spark-sql-streaming-FileStreamSource.html) but also javadocs ;) list getOffset
The maximum offset (getOffset) is calculated by fetching all the files
in path excluding files that start with _ (underscore).
That sounds interesting, but so far I have not figured out how to use it to solve my problem.
Is there a simpler way to achieve the desired functionality besides creating a custom (copy) of the FileSource?
https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/streaming/FileStreamSource.scala#L237
maxFileAge also sounds interesting.
I have started to work on a custom file stream source. However, fail to properly instanciate it. https://gist.github.com/geoHeil/6c0c51e43469ace71550b426cfcce1c1
When calling:
val df = spark.readStream.format("org.apache.spark.sql.execution.streaming.StatefulFileStreamSource")
.option("partitionState", "/path/to/data/dt=20190101")
.load("data")
The operation fails with:
InstantiationException: org.apache.spark.sql.execution.streaming.StatefulFileStreamSource
at java.lang.Class.newInstance(Class.java:427)
at org.apache.spark.sql.execution.datasources.DataSource.sourceSchema(DataSource.scala:196)
at org.apache.spark.sql.execution.datasources.DataSource.sourceInfo$lzycompute(DataSource.scala:88)
at org.apache.spark.sql.execution.datasources.DataSource.sourceInfo(DataSource.scala:88)
at org.apache.spark.sql.execution.streaming.StreamingRelation$.apply(StreamingRelation.scala:30)
at org.apache.spark.sql.streaming.DataStreamReader.load(DataStreamReader.scala:150)
at org.apache.spark.sql.streaming.DataStreamReader.load(DataStreamReader.scala:159)
... 53 elided
Caused by: java.lang.NoSuchMethodException: org.apache.spark.sql.execution.streaming.StatefulFileStreamSource.<init>()
at java.lang.Class.getConstructor0(Class.java:3082)
at java.lang.Class.newInstance(Class.java:412)
... 59 more
Even though it is basically a copy of the original source. What is different? Why is the constructor not found from https://github.com/apache/spark/blob/v2.2.3/sql/core/src/main/scala/org/apache/spark/sql/execution/datasources/DataSource.scala#L196? But it works just fine for https://github.com/apache/spark/blob/v2.2.3/sql/core/src/main/scala/org/apache/spark/sql/execution/streaming/FileStreamSource.scala#L42
Even:
touch -t 201801181205.09 data/dt=20190101/1.csv
touch -t 201801181205.09 data/dt=20190101/2.csv
val df = spark.readStream
.option("maxFileAge", "2d")
.csv("data")
returns the whole dataset and fails to filter to the most k current days.
Related
I am new to Flink (v1.3.2) and trying to read avro record continuously in scala on EMR. I know for file you can use something like following and it will keep running and scanning directory.
val stream = env.readFile(
inputFormat = textInputFormat,
filePath = path,
watchType = FileProcessingMode.PROCESS_CONTINUOUSLY,
interval = Time.seconds(10).toMilliseconds
)
Is there a similar way in Flink for avro record? So I have the following code
val textInputFormat = new AvroInputFormat(new Path(path), classOf[User])
textInputFormat.setNestedFileEnumeration(true)
val avroInputStream = env.createInput(textInputFormat)
val output = avroInputStream.map(line => (line.getUserID, 1))
.keyBy(0)
.timeWindow(Time.seconds(10))
.sum(1)
output.print()
I am able to see the output there then Flink switched to FINISHED, but still want to get the code running/waiting for any new files arrive in the future. Is there something like FileProcessingMode.PROCESS_CONTINUOUSLY? Please suggest!
I figure out this by setting up a flink-yarn-session on EMR and make it run PROCESS_CONTINUOUSLY.
env.readFile(textInputFormat, path, FileProcessingMode.PROCESS_CONTINUOUSLY, 100)
Create a new flink yarn session using flink-yarn-session -n 2 -d
Get application_id using yarn application -list, for example, it is application_0000000000_0002
Attached flink run job with the application_id,flink run -m yarn-cluster -yid application_0000000000_0002 xxx.jar
More detail can be found on EMR documentation now: https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-flink.html
I need to read a file using spark-sql, and the file is in the current directory.
I use this command to decompress a list of files I have stored on HDFS.
val decompressCommand = Seq(laszippath, "-i", inputFileName , "-o", "out.las").!!
The file is outputted in the current worker node directory, and I know this because executing "ls -a"!! through scala I can see that the file is there. I then try to access it with the following command:
val dataFrame = sqlContext.read.las("out.las")
I assumed that the sql context would try to find the file in the current directory, but it doesn't. Also, it doesn't throw an error but a warning stating that the file could not be found (so spark continues to run).
I attempted to add the file using: sparkContext.addFile("out.las") and then access the location using: val location = SparkFiles.get("out.las") but this didn't work either.
I even ran the command val locationPt = "pwd"!! and then did val fullLocation = locationPt + "/out.las" and attempted to use that value but it didn't work either.
The actual exception that gets thrown is the following:
User class threw exception: org.apache.spark.sql.AnalysisException: cannot resolve 'x' given input columns: [];
org.apache.spark.sql.AnalysisException: cannot resolve 'x' given input columns: []
And this happens when I try to access column "x" from a dataframe. I know that column 'X' exists because I've downloaded some of the files from HDFS, decompressed them locally and ran some tests.
I need to decompress files one by one because I have 1.6TB of data and so I cannot decompress it at one go and access them later.
Can anyone tell me what I can do to access files which are being outputted to the worker node directory? Or maybe should I be doing it some other way?
So I managed to do it now. What I'm doing is I'm saving the file to HDFS, and then retrieving the file using the sql context through hdfs. I overwrite "out.las" each time in HDFS so that I don't have take too much space.
I have used the hadoop API before to get to files, I dunno if it will help you here.
val filePath = "/user/me/dataForHDFS/"
val fs:FileSystem = FileSystem.get(new java.net.URI(filePath + "out.las"), sc.hadoopConfiguration)
And I've not tested the below, but I'm pretty sure I'm passing the java array to scala illegally. But just giving an idea of what to do afterward.
var readIn: Array[Byte] = Array.empty[Byte]
val fileIn: FSDataInputStream = fs.open(file)
val fileIn.readFully(0, readIn)
I have persisted object files in spark streaming using dstream.saveAsObjectFiles("/temObj") method it shows multiple files in hdfs.
temObj-1506338844000
temObj-1506338848000
temObj-1506338852000
temObj-1506338856000
temObj-1506338860000
I want to delete all temObj files after reading all. What is the bet way to do it in spark. I tried
val hdfs = org.apache.hadoop.fs.FileSystem.get(new java.net.URI("hdfs://localhost:9000"), hadoopConf)
hdfs.delete(new org.apache.hadoop.fs.Path(Path), true)
But it only can delete ane folder at a time
Unfortunately, delete doesn't support globs.
You can use globStatus and iterate over the files/directories one by one and delete them.
val hdfs = FileSystem.get(sc.hadoopConfiguration)
val deletePaths = hdfs.globStatus(new Path("/tempObj-*") ).map(_.getPath)
deletePaths.foreach{ path => hdfs.delete(path, true) }
Alternatively, you can use sys.process to execute shell commands
import scala.sys.process._
"hdfs dfs -rm -r /tempObj*" !
I am trying to execute a spark streaming application to process the stream of files data to perform word count.
The directory I am reading is from Windows. As shown I using the local directory like "Users/Name/Desktop/Stream".It is not HDFS.
I created a folder as "Stream" in desktop.
I started the Spark Streaming application and after that I added some text files into the folder 'Stream'. But my spark application is not able to read the files. It is always giving the empty results.
Here is my code.
//args(0) = local[2]
object WordCount {
def main(args: Array[String]) {
val ssc = new StreamingContext(args(0), "word_count",Seconds(5))
val lines = ssc.textFileStream("Users/name/Desktop/Stream")
val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)
wordCounts.print()
ssc.start()
ssc.awaitTermination()
}
}
Output: Getting empty data every 5 seconds
17/05/18 07:35:00 INFO Executor: Running task 0.0 in stage 71.0 (TID 35)
-------------------------------------------
Time: 1495107300000 ms
-------------------------------------------
I tried giving the path as C:/Users/name/Desktop/Stream as well - still the same issue and application could not read the files.
Can anyone please guide if I am giving the incorrect directory path ?
Your code's fine so the only issue is to use proper path to the directory. Please use file:// prefix to denote local file system that would give file://C:/Users/name/Desktop/Stream.
Please start one step at a time to confirm that our understanding is at the same level.
When you execute the Spark Streaming application, create the directory to be in the same directory where you start the application, say Stream. Once you confirm that the application works fine with the local directory we'll fix it globally to read from any directory on Windows (if that's still needed).
Please also make sure that you "move" your files as the operation to create a file in the monitored directory has to be atomic (partial writes will mark the file as processed - see StreamingContext).
Files must be written to the monitored directory by "moving" them from another location within the same file system.
As you can see in the code the directory path will eventually be "wrapped" using Hadoop's File so the issue is to convince it to accept your path:
if (_path == null) _path = new Path(directory)
I am using the BigQueryInputFormat in a spark job, to load data directly from Bigquery into an RDD. The documentation for this states that you should cleanup temporary files using the command:
BigQueryInputFormat.cleanupJob(job)
However from a Spark job, how can I do that, when "job" is a hadoop job?
Thank,
Luke
Figured it out, you can set a custom temp path that is unique to your spark job, and delete that path at the end of the job:
hadoopConf.set(BigQueryConfiguration.TEMP_GCS_PATH_KEY, "gs://mybucket/hadoop/tmp/1234")
...
FileSystem.get(new Configuration()).delete(new Path(hadoopConf.get(BigQueryConfiguration.TEMP_GCS_PATH_KEY)), true)