How to get n power ( square of a number or cube etc.) of a number in flutter? - flutter

I have two values one for base that is X and one for power N, how can a get X to the power of N ans.
any code will be appreciated.

You are looking for this:
https://api.dartlang.org/stable/2.5.0/dart-math/pow.html
so:
pow(X,N)
If you want to implement it, you can have a look at here:
https://coflutter.com/challenges/dart-how-to-implement-exponential-function-power/
This boils down to this loop:
int power(int x, int n) {
int retval = 1;
for (int i = 0; i < n; i++) {
retval *= x;
}
return retval;
}
This only works well for integer n-s.

For all of these examples with pow you need the following import:
import 'dart:math';
8²
final answer = pow(8, 2); // 64
Notes:
If you are only squaring, then it's probably easier to do this:
final answer = 8 * 8;
answer is inferred to be of type num, which could be an int or double at runtime. In this case the runtime type is int, but in the following two examples it is double.
Fourth root of 256
final answer = pow(256, 1/4); // 4.0
0.2^(-3)
final answer = pow(0.2, -3); // 124.99999999999999
That's basically the same as five cubed.

btw Its working fine for double also
double power() {
double x= double.parse(t1.text);
int y= int.parse(t2.text);
double power = 1;
for (double i = 0; i < y; i++) {
power *= x;
} ;
return power;
}

Related

Determine if matrix A is subset of matrix B

For a matrix such as
A = [...
12 34 67;
90 78 15;
10 71 24];
how could we determine efficiently if it is subset of a larger matrix?
B = [...
12 34 67; % found
89 67 45;
90 78 15; % found
10 71 24; % found, so A is subset of B.
54 34 11];
Here are conditions:
all numbers are integers
matrices are so large, i.e., row# > 100000, column# may vary from 1 to 10 (same for A and B).
Edit:
It seems that ismember for the case of this question, when called only few times works just fine. My initial impression was due to previous experiences where ismember was being invoked many times inside a nested loop resulting in the worst performance.
clear all; clc
n = 200000;
k = 10;
B = randi(n,n,k);
f = randperm(n);
A = B(f(1:1000),:);
tic
assert(sum(ismember(A,B,'rows')) == size(A,1));
toc
tic
assert(all(any(all(bsxfun(#eq,B,permute(A,[3,2,1])),2),1))); %user2999345
toc
which results in:
Elapsed time is 1.088552 seconds.
Elapsed time is 12.154969 seconds.
Here are more benchmarks:
clear all; clc
n = 20000;
f = randperm(n);
k = 10;
t1 = 0;
t2 = 0;
t3 = 0;
for i=1:7
B = randi(n,n,k);
A = B(f(1:n/10),:);
%A(100,2) = 0; % to make A not submat of B
tic
b = sum(ismember(A,B,'rows')) == size(A,1);
t1 = t1+toc;
assert(b);
tic
b = ismember_mex(A,sortrows(B));
t2 = t2+toc;
assert(b);
tic
b = issubmat(A,B);
t3 = t3+toc;
assert(b);
end
George's skm's
ismember | ismember_mex | issubmat
n=20000,k=10 0.6326 0.1064 11.6899
n=1000,k=100 0.2652 0.0155 0.0577
n=1000,k=1000 1.1705 0.1582 0.2202
n=1000,k=10000 13.2470 2.0033 2.6367
*issubmat eats RAM when n or k is over 10000!
*issubmat(A,B), A is being checked as submat of B.
It seems that ismember is hard to beat, at least using MATLAB code. I created a C implementation which can be used using the MEX compiler.
#include "mex.h"
#if MX_API_VER < 0x07030000
typedef int mwIndex;
typedef int mwSize;
#endif /* MX_API_VER */
#include <math.h>
#include <stdlib.h>
#include <string.h>
int ismember(const double *y, const double *x, int yrow, int xrow, int ncol);
void mexFunction(int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])
{
mwSize xcol, ycol, xrow, yrow;
/* output data */
int* result;
/* arguments */
const mxArray* y;
const mxArray* x;
if (nrhs != 2)
{
mexErrMsgTxt("2 input required.");
}
y = prhs[0];
x = prhs[1];
ycol = mxGetN(y);
yrow = mxGetM(y);
xcol = mxGetN(x);
xrow = mxGetM(x);
/* The first input must be a sparse matrix. */
if (!mxIsDouble(y) || !mxIsDouble(x))
{
mexErrMsgTxt("Input must be of type 'double'.");
}
if (xcol != ycol)
{
mexErrMsgTxt("Inputs must have the same number of columns");
}
plhs[0] = mxCreateLogicalMatrix(1, 1);
result = mxGetPr(plhs[0]);
*result = ismember(mxGetPr(y), mxGetPr(x), yrow, xrow, ycol);
}
int ismemberinner(const double *y, int idx, const double *x, int yrow, int xrow, int ncol) {
int from, to, i;
from = 0;
to = xrow-1;
for(i = 0; i < ncol; ++i) {
// Perform binary search
double yi = *(y + i * yrow + idx);
double *curx = x + i * xrow;
int l = from;
int u = to;
while(l <= u) {
int mididx = l + (u-l)/2;
if(yi < curx[mididx]) {
u = mididx-1;
}
else if(yi > curx[mididx]) {
l = mididx+1;
}
else {
// This can be further optimized by performing additional binary searches
for(from = mididx; from > l && curx[from-1] == yi; --from);
for(to = mididx; to < u && curx[to+1] == yi; ++to);
break;
}
}
if(l > u) {
return 0;
}
}
return 1;
}
int ismember(const double *y, const double *x, int yrow, int xrow, int ncol) {
int i;
for(i = 0; i < yrow; ++i) {
if(!ismemberinner(y, i, x, yrow, xrow, ncol)) {
return 0;
}
}
return 1;
}
Compile it using:
mex -O ismember_mex.c
It can be called as follows:
ismember_mex(x, sortrows(x))
First of all, it assumes that the columns of the matrices have the same size. It works by first sorting the rows of the larger matrix (x in this case, the second argument to the function). Then, a type of binary search is employed to identify whether the rows of the smaller matrix (y hereafter) are contained in x. This is done for each row of y separately (see ismember C function).
For a given row of y, it starts from the first entry and finds the range of indices (using the from and to variables) that match with the first column of x using binary search. This is repeated for the remaining entries, unless some value is not found, in which case it terminates and returns 0.
I tried implementing it this idea in MATLAB, but it didn't work that well. Regarding performance, I found that: (a) in case there are mismatches, it is usually much faster than ismember (b) in case the range of values in x and y is large, it is again faster than ismember, and (c) in case everything matches and the number of possible values in x and y is small (e.g. less than 1000), then ismember may be faster in some situations.
Finally, I want to point out that some parts of the C implementation may be further optimized.
EDIT 1
I fixed the warnings and further improved the function.
#include "mex.h"
#include <math.h>
#include <stdlib.h>
#include <string.h>
int ismember(const double *y, const double *x, unsigned int nrowy, unsigned int nrowx, unsigned int ncol);
void mexFunction(int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[])
{
unsigned int xcol, ycol, nrowx, nrowy;
/* arguments */
const mxArray* y;
const mxArray* x;
if (nrhs != 2)
{
mexErrMsgTxt("2 inputs required.");
}
y = prhs[0];
x = prhs[1];
ycol = (unsigned int) mxGetN(y);
nrowy = (unsigned int) mxGetM(y);
xcol = (unsigned int) mxGetN(x);
nrowx = (unsigned int) mxGetM(x);
/* The first input must be a sparse matrix. */
if (!mxIsDouble(y) || !mxIsDouble(x))
{
mexErrMsgTxt("Input must be of type 'double'.");
}
if (xcol != ycol)
{
mexErrMsgTxt("Inputs must have the same number of columns");
}
plhs[0] = mxCreateLogicalScalar(ismember(mxGetPr(y), mxGetPr(x), nrowy, nrowx, ycol));
}
int ismemberinner(const double *y, const double *x, unsigned int nrowy, unsigned int nrowx, unsigned int ncol) {
unsigned int from = 0, to = nrowx-1, i;
for(i = 0; i < ncol; ++i) {
// Perform binary search
const double yi = *(y + i * nrowy);
const double *curx = x + i * nrowx;
unsigned int l = from;
unsigned int u = to;
while(l <= u) {
const unsigned int mididx = l + (u-l)/2;
const double midx = curx[mididx];
if(yi < midx) {
u = mididx-1;
}
else if(yi > midx) {
l = mididx+1;
}
else {
{
// Binary search to identify smallest index of x that equals yi
// Equivalent to for(from = mididx; from > l && curx[from-1] == yi; --from)
unsigned int limit = mididx;
while(curx[from] != yi) {
const unsigned int mididx = from + (limit-from)/2;
if(curx[mididx] < yi) {
from = mididx+1;
}
else {
limit = mididx-1;
}
}
}
{
// Binary search to identify largest index of x that equals yi
// Equivalent to for(to = mididx; to < u && curx[to+1] == yi; ++to);
unsigned int limit = mididx;
while(curx[to] != yi) {
const unsigned int mididx = limit + (to-limit)/2;
if(curx[mididx] > yi) {
to = mididx-1;
}
else {
limit = mididx+1;
}
}
}
break;
}
}
if(l > u) {
return 0;
}
}
return 1;
}
int ismember(const double *y, const double *x, unsigned int nrowy, unsigned int nrowx, unsigned int ncol) {
unsigned int i;
for(i = 0; i < nrowy; ++i) {
if(!ismemberinner(y + i, x, nrowy, nrowx, ncol)) {
return 0;
}
}
return 1;
}
Using this version I wasn't able to identify any case where ismember is faster. Also, I noticed that one reason ismember is hard to beat is that it uses all cores of the machine! Of course, the function I provided can be optimized to do this too, but this requires much more effort.
Finally, before using my implementation I would advise you to do extensive testing. I did some testing and it seems to work, but I suggest you also do some additional testing.
For small matrices ismember should be enough, probably.
Usage: ismember(B,A,'rows')
ans =
1
0
1
1
0
I put this answer here, emphasizing on a need to solutions with higher performance. I will accept this answer only if there was no better solution.
Using ismember, if a row of A appears twice in B while another one is missing, might wrongly indicate that A is a member of B. The following solution is suitable if the rows of A and B doesn't need to be in the same order. However, I haven't tested its performance for large matrices.
A = [...
34 12 67;
90 78 15;
10 71 24];
B = [...
34 12 67; % found
89 67 45;
90 78 15; % found
10 71 24; % found, so A is subset of B.
54 34 11];
A = permute(A,[3 2 1]);
rowIdx = all(bsxfun(#eq,B,A),2);
colIdx = any(rowIdx,1);
isAMemberB = all(colIdx);
You have said number of columns <= 10. In addition, if the matrix elements are all integers representable as bytes, you could code each row into a two 64 bit integers. That would reduce the number of comparisons by a factor of 64.
For the general case, the following may not be all that much better for thin matrices, but scales very well as the matrices get fat due to the level 3 multiplication:
function yes = is_submat(A,B)
ma = size(A, 1);
mb = size(B, 1);
n = size(B, 2);
yes = false;
if ma >= mb
a = A(:,1);
b = B(:,1);
D = (0 == bsxfun(#minus, a, b'));
q = any(D, 2);
yes = all(any(D,1));
if yes && (n > 1)
A = A(q, :);
C = B*A';
za = sum(A.*A, 2);
zb = sum(B.*B, 2);
Z = sqrt(zb)*sqrt(za');
[~, ix] = max(C./Z, [], 2);
A = A(ix,:);
yes = all(A(:) == B(:));
end
end
end
In the above, I use the fact that the dot product is maximized when two unit vectors are equal.
For fat matrices (say 5000+ columns) with large numbers of unique elements the performance beats ismember quite handily, but otherwise, it is slower than ismember. For thin matrices ismember is faster by an order of magnitude.
Best case test for this function:
A = randi(50000, [10000, 10000]);
B = A(2:3:end, :);
B = B(randperm(size(B,1)),:);
fprintf('%s: %u\n', 'Number of columns', size(A,2));
fprintf('%s: %u\n', 'Element spread', 50000);
tic; is_submat(A,B); toc;
tic; all(ismember(B,A,'rows')); toc;
fprintf('________\n\n');
is_submat_test;
Number of columns: 10000
Element spread: 50000
Elapsed time is 10.713310 seconds (is_submat).
Elapsed time is 17.446682 seconds (ismember).
So I have to admit, all round ismember seems to be much better.
Edits: Edited to correct bug when there is only one column - fixing this also results in more efficient code. Also previous version did not distinguish between positive and negative numbers. Added timing tests.

Octave - how to operate with big numbers

I work on RSA algorithm in octave, but it isn't working in proper way. Problem appears while i try to use "^" function. Check my example below:
>> mod((80^65), 133)
terminal gives me:
ans = 0
I cannot fix this stuff, it's funny becouse even my system calculator return correct number (54)
to calculate this in correct way you can use fast power-modulo algorithm.
In c++, check function below where ->
a^b mod m:
int power_modulo_fast(int a, int b, int m)
{
int i;
int result = 1;
int x = a % m;
for (i=1; i<=b; i<<=1)
{
x %= m;
if ((b&i) != 0)
{
result *= x;
result %= m;
}
x *= x;
}
return result;
}

finding local mean in an image using mex-cuda

I have an image named HSIImage, of size is 565x585, in which I have find the local mean and standard deviation at every pixel. For this I am using a window W of size 9x9, if we a re finding the mean of x(i,j) we need values in the W where x(i,j) is at its center.
For working on the corner and edge pixels, I am padding the HSIImage and naming it as HSIImage2.
MATLAB code
[m,n,~] = size(HSIImage);
HSIImage2=padarray(HSIImage,[4,4],'symmetric');
mean1 = zeros(m,n);
sd = zeros(m,n);
phi_x=zeros(m,n);
for i=5:m+4
for j=5:n+4
mean1(i-4,j-4) = mean( mean(HSIImage2(i-4:i+4, j-4:j+4, 3) )); %sum / (4*4);
sd(i-4,j-4) = std( std(HSIImage2(i-4:i+4, j-4:j+4, 3), 1));
end
end
[phi_x2,mean2,sd2] = getPhi(HSIImage(:,:,3)',HSIImage2(:,:,3)',m,n);
Serial mean displayed as image.
My cuda code for finding mean and sd is
__global__ void phi(double *d_HSIImage,double *d_HSIImage2, int row, int col, double *d_phi_x, double *d_mean, double *d_std)
{
int X = blockDim.x * blockIdx.x + threadIdx.x;
int Y = blockDim.y * blockIdx.y + threadIdx.y;
int i,j;
double sum = 0;
if(Y>3 && X>3 && Y<row+4 && X<col+4)
{
for(i=Y-4;i<=Y+4;i++){
for(j=X-4;j<=X+4;j++){
sum= sum + d_HSIImage2[i*col+j];
}
}
d_mean[(Y-4)*col+X-4] = sum/81;
double mean = sum/81;
sum = 0;
for(i=Y-4;i<=Y+4;i++){
for(j=X-4;j<=X+4;j++){
int index = i*col+j;
sum= sum + (d_HSIImage2[index]-mean) * (d_HSIImage2[index]-mean);
}
}
d_std[(Y-4)*col+X-4] = sqrt(sum/81);
}
void mexFunction( int nlhs, mxArray *plhs[],int nrhs, const mxArray *prhs[])
{
double* HSIImage;
double* d_HSIImage;
double* HSIImage2;
double* d_HSIImage2;
double row;
double col;
double* phi_x;
double* d_phi_x;
double* mean2;
double* d_mean;
double* d_std;
double* sd2;
HSIImage = (double*)mxGetPr(prhs[0]);
HSIImage2 = (double*)mxGetPr(prhs[1]);
row = mxGetScalar(prhs[2]);
col = mxGetScalar(prhs[3]);
plhs[0] = mxCreateDoubleMatrix(row,col,mxREAL);
phi_x = mxGetPr(plhs[0]);
plhs[1] = mxCreateDoubleMatrix(row,col,mxREAL);
mean2 = mxGetPr(plhs[1]);
plhs[2] = mxCreateDoubleMatrix(row,col,mxREAL);
sd2 = mxGetPr(plhs[2]);
dim3 grid(((col+8)/TILE_WIDTH)+1,((row+8)/TILE_WIDTH)+1,1);
dim3 block(TILE_WIDTH,TILE_WIDTH,1);
if ( cudaMalloc(&d_HSIImage,sizeof(double)*row*col)!= cudaSuccess )
mexErrMsgTxt("Memory allocating failure on the GPU");
if ( cudaMalloc(&d_HSIImage2,sizeof(double)*(row+8)*(col+8))!= cudaSuccess )
mexErrMsgTxt("Memory allocating failure on the GPU");
if ( cudaMalloc(&d_phi_x,sizeof(double)*row*col)!= cudaSuccess )
mexErrMsgTxt("Memory allocating failure on the GPU");
if ( cudaMalloc(&d_mean,sizeof(double)*row*col)!= cudaSuccess )
mexErrMsgTxt("Memory allocating failure on the GPU");
if ( cudaMalloc(&d_std,sizeof(double)*row*col)!= cudaSuccess )
mexErrMsgTxt("Memory allocating failure on the GPU");
cudaMemcpy(d_HSIImage,HSIImage,sizeof(double)*row*col,cudaMemcpyHostToDevice);
cudaMemcpy(d_HSIImage2,HSIImage2,sizeof(double)*(row+8)*(col+8),cudaMemcpyHostToDevice);
phi <<< grid,block >>> (d_HSIImage,d_HSIImage2,row,col,d_phi_x,d_mean,d_std);
cudaMemcpy(phi_x,d_phi_x,sizeof(double)*row*col,cudaMemcpyDeviceToHost);
cudaMemcpy(mean2,d_mean,sizeof(double)*row*col,cudaMemcpyDeviceToHost);
cudaMemcpy(sd2,d_std,sizeof(double)*row*col,cudaMemcpyDeviceToHost);
cudaFree(d_HSIImage);
cudaFree(d_HSIImage2);
cudaFree(d_phi_x);
}
its working fine when image is full of ones. but when I give regular image, there is lot of difference in serial(MATLAB) and parallel(CUDA) outputs(When mean1 and mean2 are compared). Please tell me the error.
I am launching with
dim3 grid(((col+8)/TILE_WIDTH)+1,((row+8)/TILE_WIDTH)+1,1);
dim3 block(TILE_WIDTH,TILE_WIDTH,1);
TILEWIDTH is 32. row=565, col=584.
Parallel mean displayed as image
It is important to note Matlab's c api is column-major ordered, however as mentioned in the comments OP has made sure of the consistency. The problem is that the stride used to access the data did not include the pads of the image. Going from one row to another requires a stride of col+8 (8 being padding of 4 on each side.
changing
__global__ void phi(double *d_HSIImage,double *d_HSIImage2, int row, int col, double *d_phi_x, double *d_mean, double *d_std)
{
int X = blockDim.x * blockIdx.x + threadIdx.x;
int Y = blockDim.y * blockIdx.y + threadIdx.y;
int i,j;
double sum = 0;
if(Y>3 && X>3 && Y<row+4 && X<col+4)
{
for(i=Y-4;i<=Y+4;i++){
for(j=X-4;j<=X+4;j++){
sum= sum + d_HSIImage2[i*col+j];
}
}
d_mean[(Y-4)*col+X-4] = sum/81;
double mean = sum/81;
sum = 0;
for(i=Y-4;i<=Y+4;i++){
for(j=X-4;j<=X+4;j++){
int index = i*col+j;
sum= sum + (d_HSIImage2[index]-mean) * (d_HSIImage2[index]-mean);
}
}
d_std[(Y-4)*col+X-4] = sqrt(sum/81);
}
to
__global__ void phi(double *d_HSIImage,double *d_HSIImage2, int row, int col, double *d_phi_x, double *d_mean, double *d_std)
{
int X = blockDim.x * blockIdx.x + threadIdx.x;
int Y = blockDim.y * blockIdx.y + threadIdx.y;
int i,j;
double sum = 0;
if(Y>3 && X>3 && Y<row+4 && X<col+4)
{
for(i=Y-4;i<=Y+4;i++){
for(j=X-4;j<=X+4;j++){
sum= sum + d_HSIImage2[i*(col+8)+j];
}
}
d_mean[(Y-4)*col+X-4] = sum/81;
double mean = sum/81;
sum = 0;
for(i=Y-4;i<=Y+4;i++){
for(j=X-4;j<=X+4;j++){
int index = i*(col+8)+j;
sum= sum + (d_HSIImage2[index]-mean) * (d_HSIImage2[index]-mean);
}
}
d_std[(Y-4)*col+X-4] = sqrt(sum/81);
}
Should work, however, I have included a compilable example that I validated on a small sample, that should be easy to expand.
It is not optimized, but that wasn't part of your question. Optimization using shared memory would give a large performance boost.
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <cuda.h>
using namespace std;
__global__ void phi(double *img, int row, int col, double *d_mean){
int X=blockDim.x*blockIdx.x+threadIdx.x+4;
int Y=blockDim.y*blockIdx.y+threadIdx.y+4;
double sum = 0;
if(Y<row+4 && X<col+4){
for(int i=-4; i<=4; ++i){
for(int j=-4; j<=4; ++j){
sum+=img[ (Y+j)*(col+8)+X+i];
}
}
sum/=81;
d_mean[(Y-4)*col+X-4]=sum;
}
}
int main(int argc, char * argv[]) {
int width=10, height=10;
double *h_img=new double[(width+8)*(height+8)];
for(int i=0; i<height+8; i++){
for(int j=0; j<width+8; j++){
h_img[i*(width+8)+j]=0.0;
}
}
for(int i=0; i<height; i++){
for(int j=0; j<width; j++){
int index = (i+4)*(width+8)+j+4;
h_img[index]=i*width+j;
}
}
for(int i=0; i<height+8; i++){
for(int j=0; j<width+8; j++){
cout<<h_img[i*(width+8)+j]<<" ";
}cout<<endl;
}
double *d_img;
size_t size=sizeof(double)*(height+8)*(width*8);
cudaMalloc(&d_img, size);
cudaMemcpy(d_img, h_img, size, cudaMemcpyHostToDevice);
size = sizeof(double)*height*width;
double *d_avg;
cudaMalloc(&d_avg, size);
dim3 block(32, 32, 1);
dim3 grid(width/32+1, height/32+1, 1);
phi<<<grid, block>>>(d_img, height, width, d_avg);
cudaDeviceSynchronize();
double *h_avg=new double[width*height];
cudaMemcpy(h_avg, d_avg, size, cudaMemcpyDeviceToHost);
for(int i=0; i<height; i++){
for(int j=0; j<width; j++){
cout<<h_avg[i*width+j]<<" ";
}cout<<endl;
}
return 0;
}
Here's my 2 cents regarding local mean and local std.
You should check whether using matlab's optimized built-in functions (conv2 and stdfilt , with their gpu support) gives you better performance than a "simple" mex version. For example, to take the local mean, the fastest will be to use conv2 as follows:
local_mean_image=conv2(image,normalized_window,'same');
where in your case normalized_window=ones(9)./9^2;
For local std use stdfilt :
local_std_image = stdfilt(image, ones(9));
Both options are available for faster GPU performance, I use conv2 with Jacket routinely, and I saw the stdfilt supports gpuarray variables.
By observing the answers of #Christian Sarofeen and of #bla, I made some changes to my code and now I am able to find the mean exactly same as MATLAB. I posting this thinking that some one may use it in future(I am sending the image as is from MATLAB). Still finding standard deviation is little problem.
__global__ void phi(double *d_HSIImage,double *d_HSIImage2, int row, int col, double *d_phi_x, double *d_mean, double *d_std)
{
int X = blockDim.x * blockIdx.x + threadIdx.x;
int Y = blockDim.y * blockIdx.y + threadIdx.y;
int i,j;
double sum = 0;
if(Y>3 && X>3 && Y<row+4 && X<col+4)
{
int index = (X-4)*row+Y-4;
for(i=-4;i<=4;i++){
for(j=-4;j<=4;j++){
sum= sum + d_HSIImage2[(X+j)*(row+8)+(Y+i)];
}
}
d_mean[index] = sum/81;
double mean = 0;
double temp_std[9] = {0} ;
for(j=-4;j<=4;j++){
sum = 0;
for(i=-4;i<=4;i++){
sum = sum + d_HSIImage2[(X+j)*(row+8)+(Y+i)];//vector mean
}
mean = sum/9;
sum =0 ;
for(i=-4;i<=4;i++){
int index = (X+j)*(row+8)+(Y+i);
sum= sum + (d_HSIImage2[index]-mean) * (d_HSIImage2[index]-mean);
}
temp_std[j+4] = (sqrt(sum/9));//vector std
}
sum =0 ;
for(j=-4;j<=4;j++){
sum = sum + temp_std[j+4];//mean of vectors
}
mean = sum/9;
sum = 0 ;
for(j=-4;j<=4;j++){
sum = sum + (temp_std[j+4]-mean) * (temp_std[j+4]-mean);
}
d_std[index] = sqrt(sum);//std of vectors
d_phi_x[index] = 1.0/(1.0+exp((d_mean[index]-d_HSIImage[index])/d_std[index]));
}
}

Porting signal windowing code from Matlab to Java

This is part of a code from spectral subtraction algorithm,i'm trying to optimize it for android.please help me.
this is the matlab code:
function Seg=segment(signal,W,SP,Window)
% SEGMENT chops a signal to overlapping windowed segments
% A= SEGMENT(X,W,SP,WIN) returns a matrix which its columns are segmented
% and windowed frames of the input one dimentional signal, X. W is the
% number of samples per window, default value W=256. SP is the shift
% percentage, default value SP=0.4. WIN is the window that is multiplied by
% each segment and its length should be W. the default window is hamming
% window.
% 06-Sep-04
% Esfandiar Zavarehei
if nargin<3
SP=.4;
end
if nargin<2
W=256;
end
if nargin<4
Window=hamming(W);
end
Window=Window(:); %make it a column vector
L=length(signal);
SP=fix(W.*SP);
N=fix((L-W)/SP +1); %number of segments
Index=(repmat(1:W,N,1)+repmat((0:(N-1))'*SP,1,W))';
hw=repmat(Window,1,N);
Seg=signal(Index).*hw;
and this is our java code for this function:
public class MatrixAndSegments
{
public int numberOfSegments;
public double[][] res;
public MatrixAndSegments(int numberOfSegments,double[][] res)
{
this.numberOfSegments = numberOfSegments;
this.res = res;
}
}
public MatrixAndSegments segment (double[] signal_in,int samplesPerWindow, double shiftPercentage, double[] window)
{
//default shiftPercentage = 0.4
//default samplesPerWindow = 256 //W
//default window = hanning
int L = signal_in.length;
shiftPercentage = fix(samplesPerWindow * shiftPercentage); //SP
int numberOfSegments = fix ( (L - samplesPerWindow)/ shiftPercentage + 1); //N
double[][] reprowMatrix = reprowtrans(samplesPerWindow,numberOfSegments);
double[][] repcolMatrix = repcoltrans(numberOfSegments, shiftPercentage,samplesPerWindow );
//Index=(repmat(1:W,N,1)+repmat((0:(N-1))'*SP,1,W))';
double[][] index = new double[samplesPerWindow+1][numberOfSegments+1];
for (int x = 1; x < samplesPerWindow+1; x++ )
{
for (int y = 1 ; y < numberOfSegments + 1; y++) //numberOfSegments was 3
{
index[x][y] = reprowMatrix[x][y] + repcolMatrix[x][y];
}
}
//hamming window
double[] hammingWindow = this.HammingWindow(samplesPerWindow);
double[][] HW = repvector(hammingWindow, numberOfSegments);
double[][] seg = new double[samplesPerWindow][numberOfSegments];
for (int y = 1 ; y < numberOfSegments + 1; y++)
{
for (int x = 1; x < samplesPerWindow+1; x++)
{
seg[x-1][y-1] = signal_in[ (int)index[x][y]-1 ] * HW[x-1][y-1];
}
}
MatrixAndSegments Matrixseg = new MatrixAndSegments(numberOfSegments,seg);
return Matrixseg;
}
public int fix(double val) {
if (val < 0) {
return (int) Math.ceil(val);
}
return (int) Math.floor(val);
}
public double[][] repvector(double[] vec, int replications)
{
double[][] result = new double[vec.length][replications];
for (int x = 0; x < vec.length; x++) {
for (int y = 0; y < replications; y++) {
result[x][y] = vec[x];
}
}
return result;
}
public double[][] reprowtrans(int end, int replications)
{
double[][] result = new double[end +1][replications+1];
for (int x = 1; x <= end; x++) {
for (int y = 1; y <= replications; y++) {
result[x][y] = x ;
}
}
return result;
}
public double[][] repcoltrans(int end, double multiplier, int replications)
{
double[][] result = new double[replications+1][end+1];
for (int x = 1; x <= replications; x++) {
for (int y = 1; y <= end ; y++) {
result[x][y] = (y-1)*multiplier;
}
}
return result;
}
public double[] HammingWindow(int size)
{
double[] window = new double[size];
for (int i = 0; i < size; i++)
{
window[i] = 0.54-0.46 * (Math.cos(2.0 * Math.PI * i / (size-1)));
}
return window;
}
"Porting" Matlab code statement by statement to Java is a bad approach.
Data is rarely manipulated in Matlab using loops and addressing individual elements (because the Matlab interpreter/VM is rather slow), but rather through calls to block processing functions (which have been carefully written and optimized). This leads to a very idiosyncratic programming style in which repmat, reshape, find, fancy indexing et al. are used to do operations which would be much more naturally expressed through Java loops.
For example, to multiply each column of a matrix A by a vector v, you will write in matlab:
A = diag(v) * A
or
A = repmat(v', 1, size(A, 2)) .* A
This solution:
for i = 1:size(A, 2),
A(:, i) = A(:, i) .* v';
end;
is inefficient.
But it would be terribly foolish to try to do the same thing in Java and invoke a matrix product or to build a matrix with repeated copies of v. Instead, just do:
for (int i = 0; i < rows; i++) {
for (int j = 0; j < columns; j++) {
a[i][j] *= v[i]
}
}
I suggest you to try to understand what this matlab function is actually doing, instead of focusing on how it is doing it, and reimplement it from scratch in Java, forgetting all the matlab implementation except the specifications given in the comments. Half of the code you have written is useless, indeed. Actually, it seems to me that this function wouldn't be needed at all, and what it does could be efficiently integrated in the caller's code.

imregionalmax matlab function's equivalent in opencv

I have an image of connected components(circles filled).If i want to segment them i can use watershed algorithm.I prefer writing my own function for watershed instead of using the inbuilt function in OPENCV.I have successfu How do i find the regionalmax of objects using opencv?
I wrote a function myself. My results were quite similar to MATLAB, although not exact. This function is implemented for CV_32F but it can easily be modified for other types.
I mark all the points that are not part of a minimum region by checking all the neighbors. The remaining regions are either minima, maxima or areas of inflection.
I use connected components to label each region.
I check each region for any point belonging to a maxima, if yes then I push that label into a vector.
Finally I sort the bad labels, erase all duplicates and then mark all the points in the output as not minima.
All that remains are the regions of minima.
Here is the code:
// output is a binary image
// 1: not a min region
// 0: part of a min region
// 2: not sure if min or not
// 3: uninitialized
void imregionalmin(cv::Mat& img, cv::Mat& out_img)
{
// pad the border of img with 1 and copy to img_pad
cv::Mat img_pad;
cv::copyMakeBorder(img, img_pad, 1, 1, 1, 1, IPL_BORDER_CONSTANT, 1);
// initialize binary output to 2, unknown if min
out_img = cv::Mat::ones(img.rows, img.cols, CV_8U)+2;
// initialize pointers to matrices
float* in = (float *)(img_pad.data);
uchar* out = (uchar *)(out_img.data);
// size of matrix
int in_size = img_pad.cols*img_pad.rows;
int out_size = img.cols*img.rows;
int x, y;
for (int i = 0; i < out_size; i++) {
// find x, y indexes
y = i % img.cols;
x = i / img.cols;
neighborCheck(in, out, i, x, y, img_pad.cols); // all regions are either min or max
}
cv::Mat label;
cv::connectedComponents(out_img, label);
int* lab = (int *)(label.data);
in = (float *)(img.data);
in_size = img.cols*img.rows;
std::vector<int> bad_labels;
for (int i = 0; i < out_size; i++) {
// find x, y indexes
y = i % img.cols;
x = i / img.cols;
if (lab[i] != 0) {
if (neighborCleanup(in, out, i, x, y, img.rows, img.cols) == 1) {
bad_labels.push_back(lab[i]);
}
}
}
std::sort(bad_labels.begin(), bad_labels.end());
bad_labels.erase(std::unique(bad_labels.begin(), bad_labels.end()), bad_labels.end());
for (int i = 0; i < out_size; ++i) {
if (lab[i] != 0) {
if (std::find(bad_labels.begin(), bad_labels.end(), lab[i]) != bad_labels.end()) {
out[i] = 0;
}
}
}
}
int inline neighborCleanup(float* in, uchar* out, int i, int x, int y, int x_lim, int y_lim)
{
int index;
for (int xx = x - 1; xx < x + 2; ++xx) {
for (int yy = y - 1; yy < y + 2; ++yy) {
if (((xx == x) && (yy==y)) || xx < 0 || yy < 0 || xx >= x_lim || yy >= y_lim)
continue;
index = xx*y_lim + yy;
if ((in[i] == in[index]) && (out[index] == 0))
return 1;
}
}
return 0;
}
void inline neighborCheck(float* in, uchar* out, int i, int x, int y, int x_lim)
{
int indexes[8], cur_index;
indexes[0] = x*x_lim + y;
indexes[1] = x*x_lim + y+1;
indexes[2] = x*x_lim + y+2;
indexes[3] = (x+1)*x_lim + y+2;
indexes[4] = (x + 2)*x_lim + y+2;
indexes[5] = (x + 2)*x_lim + y + 1;
indexes[6] = (x + 2)*x_lim + y;
indexes[7] = (x + 1)*x_lim + y;
cur_index = (x + 1)*x_lim + y+1;
for (int t = 0; t < 8; t++) {
if (in[indexes[t]] < in[cur_index]) {
out[i] = 0;
break;
}
}
if (out[i] == 3)
out[i] = 1;
}
The following listing is a function similar to Matlab's "imregionalmax". It looks for at most nLocMax local maxima above threshold, where the found local maxima are at least minDistBtwLocMax pixels apart. It returns the actual number of local maxima found. Notice that it uses OpenCV's minMaxLoc to find global maxima. It is "opencv-self-contained" except for the (easy to implement) function vdist, which computes the (euclidian) distance between points (r,c) and (row,col).
input is one-channel CV_32F matrix, and locations is nLocMax (rows) by 2 (columns) CV_32S matrix.
int imregionalmax(Mat input, int nLocMax, float threshold, float minDistBtwLocMax, Mat locations)
{
Mat scratch = input.clone();
int nFoundLocMax = 0;
for (int i = 0; i < nLocMax; i++) {
Point location;
double maxVal;
minMaxLoc(scratch, NULL, &maxVal, NULL, &location);
if (maxVal > threshold) {
nFoundLocMax += 1;
int row = location.y;
int col = location.x;
locations.at<int>(i,0) = row;
locations.at<int>(i,1) = col;
int r0 = (row-minDistBtwLocMax > -1 ? row-minDistBtwLocMax : 0);
int r1 = (row+minDistBtwLocMax < scratch.rows ? row+minDistBtwLocMax : scratch.rows-1);
int c0 = (col-minDistBtwLocMax > -1 ? col-minDistBtwLocMax : 0);
int c1 = (col+minDistBtwLocMax < scratch.cols ? col+minDistBtwLocMax : scratch.cols-1);
for (int r = r0; r <= r1; r++) {
for (int c = c0; c <= c1; c++) {
if (vdist(Point2DMake(r, c),Point2DMake(row, col)) <= minDistBtwLocMax) {
scratch.at<float>(r,c) = 0.0;
}
}
}
} else {
break;
}
}
return nFoundLocMax;
}
I do not know if it is what you want, but in my answer to this post, I gave some code to find local maxima (peaks) in a grayscale image (resulting from distance transform).
The approach relies on subtracting the original image from the dilated image and finding the zero pixels).
I hope it helps,
Good luck
I had the same problem some time ago, and the solution was to reimplement the imregionalmax algorithm in OpenCV/Cpp. It is not that complicated, because you can find the C++ source code of the function in the Matlab distribution. (somewhere in toolbox). All you have to do is to read carefully and understand the algorithm described there. Then rewrite it or remove the matlab-specific checks and you'll have it.