i have loaded a stl file of a turbine blade into Matlab by using the STLreader. I got the coordinates of all points on the surfaces of the stl model by using the trisurf command (airfoil and foot of the blade). Now I want to focus on the suction sided coordinates of the airfoil. Therefore, I excluded the points of the blade foot by using the location of the Z-coordinates of the points. Now I want to exclude all points of the airfoil that aren't part of the suction side by using the X- and Y-coordinates of the points but I don't know how to do it. An image is attached to show my problem. I have tried the coordinatetransformation to rotate the X-Y-plane to say that all point with Y smaller than zero are deleted but it doesn't work well because of the curve of the airfoil. I always cut to much or not enough points.
Hopefully, someone can help me.
Yours
Tobias
turbine blade picture
Related
I have image of robot with yellow markers as shown
The yellow points shown are the markers. There are two cameras used to view placed at an offset of 90 degrees. The robot bends in between the cameras. The crude schematic of the setup can be referred.
https://i.stack.imgur.com/aVyDq.png
Using the two cameras I am able to get its 3d co-ordinates of the yellow markers. But, I need to find the 3d-co-oridnates of the central point of the robot as shown.
I need to find the 3d position of the red marker points which is inside the cylindrical robot. Firstly, is it even feasible? If yes, what is the method I can use to achieve this?
As a bonus, is there any literature where they find the 3d location of such internal points which I can refer to (I searched, but could not find anything similar to my ask).
I am welcome to a theoretical solution as well(as long as it assures to find the central point within a reasonable error), which I can later translate to code.
If you know the actual dimensions, or at least, shape (e.g. perfect circle) of the white bands, then yes, it is feasible and possible.
You need to do the following steps, which are quite non trivial to do, and I won't do them here:
Optional but extremely suggested: calibrate your camera, and
undistort it.
find the equation of the projection of a 3D circle into a 2D camera, for any given rotation. You can simplify this by assuming the white line will be completely horizontal. You want some function that takes the parameters that make a circle and a rotation.
Find all white bands in the image, segment them, and make them horizontal (rotate them)
Fit points in the corrected white circle to the equation in (1). That should give you the parameters of the circle in 3d (radious, angle), if you wrote the equation right.
Now that you have an analytic equation of the actual circle (equation from 1 with parameters from 3), you can map any point from this circle (e.g. its center) to the image location. Remember to uncorrect for the rotations in step 2.
This requires understanding of curve fitting, some geometric analytical maths, and decent code skills. Not trivial, but this will provide a solution that is highly accurate.
For an inaccurate solution:
Find end points of white circles
Make line connecting endpoints
Chose center as mid point of this line.
This will be inaccurate because: choosing end points will have more error than fitting an equation with all points, ignores cone shape of view of the camera, ignores geometry.
But it may be good enough for what you want.
I have been able to extract the midpoint by fitting an ellipse to the arc visible to the camera. The centroid of the ellipse is the required midpoint.
There will be wrong ellipses as well, which can be ignored. The steps to extract the ellipse were:
Extract the markers
Binarise and skeletonise
Fit ellipse to the arc (found a matlab function for this)
Get the centroid of the ellipse
hsv_img=rgb2hsv(im);
bin=new_hsv_img(:,:,3)>marker_th; %was chosen 0.35
%skeletonise
skel=bwskel(bin);
%use regionprops to get the pixelID list
stats=regionprops(skel,'all');
for i=1:numel(stats)
el = fit_ellipse(stats(i).PixelList(:,1),stats(i).PixelList(:,2));
ellipse_draw(el.a, el.b, -el.phi, el.X0_in, el.Y0_in, 'g');
The link for fit_ellipse function
Link for ellipse_draw function
I have a set of data in 3D which are in the same plane. I have a Triangle containing those data points in the same plane. But the Area of the Triangle is much larger. I want to find the smallest area triangle (co-ordinate of its 3 points) containing all the data point inside it. There are some concepts available for 2D data points, but I need to find this in 3D dimension.
It looks like Matlab has a function for this, convhull. You want to find the convex hull of the data set. http://www.mathworks.com/help/matlab/ref/convhull.html This function works for points in 2d or 3d space.
I would like to find residuals of my solutions. However, each solution uses a different grid, thus I would like to interpolate the solutions in 2D to a mesh grid for each solution such that I can easily find the residuals.
I used griddata which seems to work, but it doesn't work very well in regions of discontinuities and near edges. I would like to interpolate data of flow over a sphere for example. The area of the sphere should be confined to zero since that is outside of the grid boundaries; however, after using griddata, there's some non zero values in the sphere region. I also get a warning saying there were duplicate x and y points.
Does anyone know how to preserve the integrity of the sphere after using griddata? I've double checked the original x,y data, and the area of the sphere all have values of 0.
Thank you. I hope that made sense.
Best,
Yuki
I have N 3D observations taken from an optical motion capture system in XYZ form.
The motion that was captured was just a simple circle arc, derived from a rigid body with fixed axis of rotation.
I used the princomp function in matlab to get all marker points on the same plane i.e. the plane on which the motion has been done.
(See a pic representing 3D data on the plane that was found, below)
What i want to do after the previous step is to look the fitted data on the plane that was found and get the curve of the captured motion in 2D.
In the princomp how to, it is said that
The first two coordinates of the principal component scores give the
projection of each point onto the plane, in the coordinate system of
the plane.
(from "Fitting an Orthogonal Regression Using Principal Components Analysis" article on mathworks help site)
So i thought that if i just plot those pc scores -plot(score(:,1),score(:,2))- i'll get the motion curve. Instead what i got is this.
(See a pic representing curve data in 2D derived from pc scores, below)
The 2d curve seems stretched and nonlinear (different y values for same x values) when it shouldn't be. The curve that i am looking for, should be interpolated by just using simple polynomial (polyfit) or circle fit in matlab.
Is this happening because the plane that was found looks like rhombus relative to the original coordinate system and the pc axes are rotated with respect to the basis of plane in such way that produce this stretch?
Then i thought that, this is happening because of the different coordinate systems of optical system and Matlab. Optical system's (ie cameras) co.sys. is XZY oriented and Matlab's default (i think) co.sys is XYZ oriented. I transformed my data to correspond to Matlab's co.sys through a rotation matrix, run again princomp but i got the same stretch in the 2D curve (the new curve just had different orientation now).
Somewhere else i read that
Principal Components Analysis chooses the first PCA axis as that line
that goes through the centroid, but also minimizes the square of the
distance of each point to that line. Thus, in some sense, the line is
as close to all of the data as possible. Equivalently, the line goes
through the maximum variation in the data. The second PCA axis also
must go through the centroid, and also goes through the maximum
variation in the data, but with a certain constraint: It must be
completely uncorrelated (i.e. at right angles, or "orthogonal") to PCA
axis 1.
I know that i am missing something but i have a problem understanding why i get a stretched curve. What i have to do so i can get the curve right?
Thanks in advance.
EDIT: Here is a sample data file (3 columns XYZ coords for 2 markers)
w w w.sendspace.com/file/2hiezc
I want to plot 3D cube of size 2x2x5 (x,y,z) around an interest point to get the nearest points to it and inside the cube. The interest point may be at the center of cube.
How can I get the nearest points to the interest point?
There are several techniques for drawing cubes here. You will need to choose one that lets you specify size and origin. The sizes will be 2,2,5, and the origin will be the coordinates of the interest point.