We are looking at a Kubernetes scenario that requires us to maintain N pods for a given Deployment (let's assume for simplicitly that N is static and N = 3). Currently we are using a Deployment and a ReplicaSet for this.
Within each pod, is there any way (through environment variable injection or similar) for us to get a unique identifier that shows which pod that pod is (i.e. "1", "2", "3" or similar... the exact format is unimportant).
What is especially important (because of the system these pods connect to) is that if pod "2" dies, the replacement pod also reports its identifier as "2", not as something new, e.g. "4"... in other words, the set of identifiers does not change over time unless the size of the set is increased / decreased. Currently we are using the pod name, but that is not stable in this way; the pod name is new and unique every time.
Is this what a StatefulSet is for? The documentation seems to focus in particular on storage volumes, but this is not a priority for us. How would we actually obtain the unique and stable ID inside the container in code?
Yes, Statefulset is the way to go if the pods need to have their identity defined in some way.
Here is the quote from a relevant section from the docs:
Like a Deployment, a StatefulSet manages Pods that are based on an
identical container spec. Unlike a Deployment, a StatefulSet maintains
a sticky identity for each of their Pods. These pods are created from
the same spec, but are not interchangeable: each has a persistent
identifier that it maintains across any rescheduling.
So, if you have a Statefulset object named myapp with 3 replicas then the pods will be named as myapp-0, myapp-1 and myapp-2.
Further, if any of the pods die say myapp-1 then the new pod created as the replacement of that will again be myapp-1.
You can expose the pod name to the containers via environment variables through Downward API and use it inside the scripts:
env:
- name: MY_POD_NAME
valueFrom:
fieldRef:
fieldPath: metadata.name
A relevant note that I missed to mention is that with Statefulsets the pods are brought up one by one unlike Deployments. So, for the above example myapp, myapp-1 will only get started after myapp-0 is ready.
How can one start a service or deployment just by using name of the service or deployment from kubernetes java sdk?
Suppose we have started and stopped the service or deployment once, so whether this can be achieved to just use the same name by which we have done the deployment or deployed the service.
For eg :
start a deployment by name nginx-deployment by using yaml file and then delete the deployment.
now try to start the same deployment just by using the name of previous deployment from kubernetes java sdk.
whether this can be achieved or not.
In kubernetes you can't stop a service, then to start it again (like in docker). Once a pod is killed, it will need to be re-created.
Now, if you delete a deployment, then you can re-create the same deployment, with the same name, with no problems.
If you are concerned about the state of the application, you can either use a StatefulSet or map the container content into an external volume. For example into the node.
I have a conceptional question, does ReplicaSets use Pod settings?
Before i applied my ReplicaSets i deleted my Pods, so there is no information about my old Pods ?
If I apply now the Replicaset does this reference to the Pod settings, so with all settings like readinessProbe/livenessProbe ... ?
My Questions came up because in my replicaset.yml is a container section where I specified my docker image, but why does it need that information, isn't it a redundant information, because this information is in my pods.yml ?
apiVersion: extensions/v1beta1
kind: ReplicaSet
metadata:
name: test1
spec:
replicas: 2
template:
metadata:
labels:
app: web
spec:
containers:
- name: test1
image: test/test
Pods are the smallest deployable units of computing that can be
created and managed in Kubernetes.
A Pod (as in a pod of whales or pea pod) is a group of one or more
containers (such as Docker containers), with shared storage/network,
and a specification for how to run the containers.
See, https://kubernetes.io/docs/concepts/workloads/pods/pod/.
So, you can specify how your Pod will be scheduled (one or more containers, ports, probes, volumes, etc.).
But in case of the node failure or anything bad that can harm to the Pod, then that Pod won't be rescheduled (you have to rescheduled manually). So, in that case, you need a controller. Kubernetes provides some controllers (each one for different purposes). They are -
ReplicaSet
ReplicationController
Deployment
StatefulSet
DaemonSet
Job
CronJob
All of the above controllers and the Pod together are called as Workload. Because they all have a podTemplate section. And they all create some number of identical Pods ass specified by the spec.replicas field (if this field exists in the corresponding workload manifest). They all are upper-level concept than Pod.
Though the Deployment is more suitable than the ReplicaSet, this answer focuses on ReplicaSet over Pod cause the question is between the Pod and ReplicaSet.
In addition, each one of the above controllers has it's own purpose. Like a ReplicaSet’s purpose is to maintain a stable set of replica Pods running at any given time. As such, it is often used to guarantee the availability of a specified number of identical Pods.
A ReplicaSet contains a podTemplate field including selectors to identify and acquire Pod(s). A pod template specifying the configuration of new Pods it should create to meet the number of replicas criteria. It creates and deletes Pod(s) as needed to reach the desired number. When a ReplicaSet needs to create new Pod(s), it uses its Pod template.
The Pod(s) maintained by a ReplicaSet has metadata.ownerReferences field, to tell which resource owns the current Pod(s).
A ReplicaSet identifies new Pods to acquire by using its selector. If there is a Pod that has no OwnerReference or the OwnerReference is not a controller and it matches a ReplicaSet’s selector, it will be immediately acquired by said ReplicaSet.
Ref: https://kubernetes.io/docs/concepts/workloads/controllers/replicaset/
**
Now, its time to answer your questions
Since ReplicaSet is one of the Pod controller (listed above), obviously, it needs a podTemplate (using this template, your Pods will be scheduled). All of the Pods the ReplicaSet creates will have the same Pod configuration (same containers, same ports, same readiness/livelinessProbe, volumes, etc.). And having this podTemplate is not redundant info, it's needed. So, if you have a Pod controller like ReplicaSet or other (as your need), you don't need the Pod itself anymore. Because the ReplicaSet (or the other controllers) will create Pod(s).
**
Guess, you got the answer.
Does ReplicaSets replace Pods?
Yes, if you have replicaset.yml you don't need pods.yml.
I have a conceptional question, does ReplicaSets use Pod settings?
Before i applied my ReplicaSets i deleted my Pods, so there is no
information about my old Pods ? If I apply now the Replicaset does
this reference to the Pod settings, so with all settings like
readinessProbe/livenessProbe ... ?
No, the ReplicaSet manifest has to contain the Pod specification in order to determine what is the configuration of the pods that should be deployed.
With the labels, you link the ReplicaSet to running Pods.
You don't link the ReplicaSet.yml manifest to the Pods.yml manifest.
Don’t use naked Pods (that is, Pods not bound to a ReplicaSet or Deployment) if you can avoid it. Naked Pods will not be rescheduled in the event of a node failure.
In 99% of the cases, there isn't a separate pods.yml manifest.
The pods + the ReplicaSet are defined in a single manifest, hence the containers section in the replicaset.yml.
I am trying to set up MongoDB and MongoDB monitoring agent on a kubernetes cluster.
The monitoring agent first queries the service endpoint for the mongodb instance, and receives the hostname as a response. It then stops using the service endpoint, and starts to use the hostname to connect to the instance which fails as there is no resolution to get the container name resolved.
I think I can use a headless service to achieve this, although using headless service is not an option.
Is there any way to enable hostname resolution for containers/pods in Kubernetes or inject custom DNS records in kube-dns?
You should create a StatefulSet for your use case. Because you need your pod to have a unique identifier. To quote the docs, StatefulSets have:
StatefulSet Pods have a unique identity that is comprised of an ordinal, a stable network identity, and stable storage. The identity sticks to the Pod, regardless of which node it’s (re)scheduled on.
So if you are using Deployment object for MongoDB modify it to StatefulSet object type.
Your pods will be name resolved as well.
Docs:
StatefulSet: https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
StatefulSet Basics: https://kubernetes.io/docs/tutorials/stateful-application/basic-stateful-set/
I have been creating pods with type:deployment but I see that some documentation uses type:pod, more specifically the documentation for multi-container pods:
apiVersion: v1
kind: Pod
metadata:
name: ""
labels:
name: ""
namespace: ""
annotations: []
generateName: ""
spec:
? "// See 'The spec schema' for details."
: ~
But to create pods I can just use a deployment type:
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
name: ""
spec:
replicas: 3
template:
metadata:
labels:
app: ""
spec:
containers:
etc
I noticed the pod documentation says:
The create command can be used to create a pod directly, or it can
create a pod or pods through a Deployment. It is highly recommended
that you use a Deployment to create your pods. It watches for failed
pods and will start up new pods as required to maintain the specified
number. If you don’t want a Deployment to monitor your pod (e.g. your
pod is writing non-persistent data which won’t survive a restart, or
your pod is intended to be very short-lived), you can create a pod
directly with the create command.
Note: We recommend using a Deployment to create pods. You should use
the instructions below only if you don’t want to create a Deployment.
But this raises the question of what kind:pod is good for? Can you somehow reference pods in a deployment? I didn't see a way. It looks like what you get with pods is some extra metadata but none of the deployment options such as replica or a restart policy. What good is a pod that doesn't persist data, survives a restart? I think I'd be able to create a multi-container pod with a deployment as well.
Radek's answer is very good, but I would like to pitch in from my experience, you will almost never use an object with the kind pod, because that doesn't make any sense in practice.
Because you need a deployment object - or other Kubernetes API objects like a replication controller or replicaset - that needs to keep the replicas (pods) alive (that's kind of the point of using kubernetes).
What you will use in practice for a typical application are:
Deployment object (where you will specify your apps container/containers) that will host your app's container with some other specifications.
Service object (that is like a grouping object and gives it a so-called virtual IP (cluster IP) for the pods that have a certain label - and those pods are basically the app containers that you deployed with the former deployment object).
You need to have the service object because the pods from the deployment object can be killed, scaled up and down, and you can't rely on their IP addresses because they will not be persistent.
So you need an object like a service, that gives those pods a stable IP.
Just wanted to give you some context around pods, so you know how things work together.
Hope that clears a few things for you, not long ago I was in your shoes :)
Both Pod and Deployment are full-fledged objects in the Kubernetes API. Deployment manages creating Pods by means of ReplicaSets. What it boils down to is that Deployment will create Pods with spec taken from the template. It is rather unlikely that you will ever need to create Pods directly for a production use-case.
Kubernetes has three Object Types you should know about:
Pods - runs one or more closely related containers
Services - sets up networking in a Kubernetes cluster
Deployment - Maintains a set of identical pods, ensuring that they have the correct config and that the right number of them exist.
Pods:
Runs a single set of containers
Good for one-off dev purposes
Rarely used directly in production
Deployment:
Runs a set of identical pods
Monitors the state of each pod, updating as necessary
Good for dev
Good for production
And I would agree with other answers, forget about Pods and just use Deployment. Why? Look at the second bullet point, it monitors the state of each pod, updating as necessary.
So, instead of struggling with error messages such as this one:
Forbidden: pod updates may not change fields other than spec.containers[*].image
So just refactor or completely recreate your Pod into a Deployment that creates a pod to do what you need done. With Deployment you can change any piece of configuration you want to and you need not worry about seeing that error message.
Pod is container instance.
That is the output of replicas: 3
Think of one deployment can have many running instances(replica).
//deployment.yaml
apiVersion: apps/v1beta2
kind: Deployment
metadata:
name: tomcat-deployment222
spec:
selector:
matchLabels:
app: tomcat
replicas: 3
template:
metadata:
labels:
app: tomcat
spec:
containers:
- name: tomcat
image: tomcat:9.0
ports:
- containerPort: 8080
I want to add some informations from Kubernetes In Action book, so you can see all picture and connect relation between Kubernetes resources like Pod, Deployment and ReplicationController(ReplicaSet)
Pods
are the basic deployable unit in Kubernetes. But in real-world use cases, you want your deployments to stay up and running automatically and remain healthy without any manual intervention. For this the recommended approach is to use a Deployment, which under the hood create a ReplicaSet.
A ReplicaSet, as the name implies, is a set of replicas (Pods) maintained with their Revision history.
(ReplicaSet extends an older object called ReplicationController -- which is exactly the same but without the Revision history.)
A ReplicaSet constantly monitors the list of running pods and makes sure the running number of pods matching a certain specification always matches the desired number.
Removing a pod from the scope of the ReplicationController comes in handy
when you want to perform actions on a specific pod. For example, you might
have a bug that causes your pod to start behaving badly after a specific amount
of time or a specific event.
A Deployment
is a higher-level resource meant for deploying applications and updating them declaratively.
When you create a Deployment, a ReplicaSet resource is created underneath (eventually more of them). ReplicaSets replicate and manage pods, as well. When using a Deployment, the actual pods are created and managed by the Deployment’s ReplicaSets, not by the Deployment directly
Let’s think about what has happened. By changing the pod template in your Deployment resource, you’ve updated your app to a newer version—by changing a single field!
Finally, Roll back a Deployment either to the previous revision or to any earlier revision so easy with Deployment resource.
These images are from Kubernetes In Action book, too.
Pod is a collection of containers and basic object of Kuberntes. All containers of pod lie in same node.
Not suitable for production
No rolling updates
Deployment is a kind of controller in Kubernetes.
Controllers use a Pod Template that you provide to create the Pods for which it is responsible.
Deployment creates a ReplicaSet which in turn make sure that,
CurrentReplicas is always same as desiredReplicas .
Advantages :
You can rollout and rollback your changes using deployment
Monitors the state of each pod
Best suitable for production
Supports rolling updates
In Kubernetes we can deploy our workloads using different type of API objects like Pods, Deployment, ReplicaSet, ReplicationController and StatefulSets.
Out of those Pods are the smallest deployable unit in Kubernetes. Any workload/application that runs in Kubernetes, has to run inside a container part of a Pod. A Pod could run multiple containers (meaning multiple applications) within it. A Pod is a wrapper on top of one/many running containers. Using a Pod, kubernetes could control, monitor, operate the containers.
Now using stand alone Pods we can't do lot of things. We can't change configurations, volumes inside Pods. We can't restart the Pod if one is down.
So there is another API Object called Deployment comes into picture which maintains the desired state (how many instances, how much compute resource application uses) of the application. The Deployment maintaines multiple instances of same application by running multiple Pods. Deployments unlike Pods are mutable. Deployments uses another API Object called ReplicaSet to maintain the desired state. Deployments through ReplicaSet spawns another Pod if one is down.
So Pod runs applications in containers. Deployments run Pods and maintains desired state of the application.
Try to avoid Pods and implement Deployments instead for managing containers as objects of kind Pod will not be rescheduled (or self healed) in the event of a node failure or pod termination.
A Deployment is generally preferable because it defines a ReplicaSet to ensure that the desired number of Pods is always available and specifies a strategy to replace Pods, such as RollingUpdate.
May be this example will be helpful for beginners !!
1) Listing PODs
controlplane $ kubectl -n my-namespace get pods
NAME READY STATUS RESTARTS AGE
mysql 1/1 Running 0 92s
webapp-mysql-75dfdf859f-9c54j 1/1 Running 0 92s
2) Deleting web-app pode - which is created using deployment
controlplane $ kubectl -n my-namespace delete pod webapp-mysql-75dfdf859f-9c54j
pod "webapp-mysql-75dfdf859f-9c54j" deleted
3) Listing PODs ( You can see, it is recreated automatically)
controlplane $ kubectl -n my-namespace get pods
NAME READY STATUS RESTARTS AGE
mysql 1/1 Running 0 2m42s
webapp-mysql-75dfdf859f-mqrcx 1/1 Running 0 45s
4) Deleting mysql POD whcih is created directly ( with out deployment)
controlplane $ kubectl -n my-namespace delete pod mysql
pod "mysql" deleted
5) Listing PODs ( You can see mysql POD is lost for ever )
controlplane $ kubectl -n my-namespace get pods
NAME READY STATUS RESTARTS AGE
webapp-mysql-75dfdf859f-mqrcx 1/1 Running 0 76s
In kubernetes Pods are the smallest deployable units. Every time when we create a kubernetes object like Deployments, replica-sets, statefulsets, daemonsets it creates pod.
As mentioned above deployments create pods based on desired state mentioned in your deployment object. So for example you want 5 replicas of a application, you mentioned replicas: 5 in your deployment manifest. Now deployment controller is responsible to create 5 identical replicas (no less, no more) of given application with all metadata like RBAC policy, networks policy, labels, annotations, health check, resource quotas, taint/tolerations and others and associate with each pods it creates.
There are some cases when you wants to create pod, for example if you are running a test sidecar where you don't need to run application forever, you don't need multiple replicas, and you run application when you wants to execute in that case pod is suitable. For example helm test, which is a pod definition that specifies a container with a given command to run.
I am also a beginner in k8s so correct me if I am wrong.
We know that a pod is created when we create a deployment. What I observed is that if you see the YAML file of the deployment, you can see its kind:deployment. But if you see the YAML file of the pod, you see its kind:pod.