Related
Some context:
I have been studying AI and ML for the last couple of month now and finally I am studying neural nets. Great! The problem is that when I follow a tutorial everything seems to be OK, but when I try to implement a NN by my self I always face issues related to the size of the tensors.
I have seem the answer to other questions (like this one) but they face the exact problem of the post. I am not looking for a code to just copy and paste. I want to understand why I am facing this problem, how to handle it and avoid it.
The error message:
/home/devops/aic/venv/lib/python3.8/site-packages/torch/nn/modules/loss.py:528: UserWarning: Using a target size (torch.Size([16, 2])) that is different to the input size (torch.Size([9, 2])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size.
return F.mse_loss(input, target, reduction=self.reduction)
Traceback (most recent call last):
File "nn_conv.py", line 195, in
loss = loss_function(outputs, targets)
File "/home/devops/aic/venv/lib/python3.8/site-packages/torch/nn/modules/module.py", line 889, in _call_impl
result = self.forward(*input, **kwargs)
File "/home/devops/aic/venv/lib/python3.8/site-packages/torch/nn/modules/loss.py", line 528, in forward
return F.mse_loss(input, target, reduction=self.reduction)
File "/home/devops/aic/venv/lib/python3.8/site-packages/torch/nn/functional.py", line 2928, in mse_loss
expanded_input, expanded_target = torch.broadcast_tensors(input, target)
File "/home/devops/aic/venv/lib/python3.8/site-packages/torch/functional.py", line 74, in broadcast_tensors
return _VF.broadcast_tensors(tensors) # type: ignore
RuntimeError: The size of tensor a (9) must match the size of tensor b (16) at non-singleton dimension 0
This is my code:
import os
import cv2
import numpy as np
from tqdm import tqdm
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
class DogsVSCats():
IMG_SIZE = 50
CATS = 'PetImages/Cat'
DOGS = 'PetImages/Dog'
LABELS = {CATS: 0, DOGS: 1}
training_data = []
cats_count = 0
dogs_count = 0
def make_training_data(self):
for label in self.LABELS.keys():
for f in tqdm(os.listdir(label)):
try:
path = os.path.join(label, f)
# convert image to grayscale
img = cv2.imread(path)
if img is not None:
height, width = img.shape[:2]
if width > height:
height = round((height * self.IMG_SIZE) / width)
width = self.IMG_SIZE
right = 0
bottom = self.IMG_SIZE - height
else:
width = round((width * self.IMG_SIZE) / height)
height = self.IMG_SIZE
right = self.IMG_SIZE - width
bottom = 0
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
img = cv2.resize(img, (width, height))
img = cv2.copyMakeBorder(img,
top=0,
bottom=bottom,
left=0,
right=right,
borderType=cv2.BORDER_CONSTANT)
# Add a One-hot-vector of label of the image to self.training_data
self.training_data.append([np.array(img), np.eye(len(self.LABELS))[self.LABELS[label]]])
if label == self.CATS:
self.cats_count += 1
elif label == self.DOGS:
self.dogs_count += 1
except cv2.error as e:
pass
np.random.shuffle(self.training_data)
np.save("PetImages/training_data.npy", self.training_data)
print("Cats:", self.cats_count)
print("Dogs:", self.dogs_count)
training_data = np.load('PetImages/training_data.npy', allow_pickle=True)
plt.imsave('PetImages/trained_example.png', training_data[1][0])
class RunningMetrics():
def __init__(self):
self._sum = 0
self._count = 0
def __call__(self):
return self._sum/float(self._count)
def update(self, val, size):
self._sum += val
self._count += size
class Net(nn.Module):
def __init__(self, num_channels, conv_kernel_size=3, stride=1, padding=1, max_pool_kernel_size=2):
super(Net, self).__init__()
self._num_channels = num_channels
self._max_pool_kernel_size = max_pool_kernel_size
self.conv1 = nn.Conv2d(1, self._num_channels, conv_kernel_size, stride, padding)
self.conv2 = nn.Conv2d(self._num_channels, self._num_channels*2, conv_kernel_size, stride, padding)
self.conv3 = nn.Conv2d(self._num_channels*2, self._num_channels*4, conv_kernel_size, stride, padding)
# Calc input of first
self.fc1 = nn.Linear(self._num_channels*4*8*8, self._num_channels*8)
self.fc2 = nn.Linear(self._num_channels*8, 2)
def forward(self, x):
# Conv
x = self.conv1(x)
x = F.relu(F.max_pool2d(x, self._max_pool_kernel_size))
x = self.conv2(x)
x = F.relu(F.max_pool2d(x, self._max_pool_kernel_size))
x = self.conv3(x)
x = F.relu(F.max_pool2d(x, self._max_pool_kernel_size))
# Flatten
x = x.view(-1, self._num_channels*4*8*8)
# Fully Connected
x = self.fc1(x)
x = F.relu(x)
x = self.fc2(x)
# return F.log_softmax(x, dim=1)
return F.softmax(x, dim=1)
def save_model(path):
torch.save(save, path)
def load_model(path):
self = torch.load(PATH)
self.eval()
if __name__ == '__main__':
print('Loading dataset')
if not os.path.exists("PetImages/training_data.npy"):
dogsvcats = DogsVSCats()
dogsvcats.make_training_data()
training_data = np.load('PetImages/training_data.npy', allow_pickle=True)
print('Loading Net')
net = Net(num_channels=32)
# net = net.to(device)
# optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9 )
optimizer = optim.Adam(net.parameters(), lr=0.001)
# loss_function = nn.NLLLoss()
loss_function = nn.MSELoss()
print('Converting X tensor')
X = torch.Tensor([i[0] for i in training_data]).view(-1, 50, 50)
X = X/255.0
print('Converting Y tensor')
y = torch.Tensor([i[1] for i in training_data])
# Validation data
VAL_PERCENT = 0.1
val_size = int(len(X)*VAL_PERCENT)
X_train = X[:-val_size]
y_train = y[:-val_size]
X_test = X[-val_size:]
y_test = y[-val_size:]
print('Training Set:', len(X_train))
print('Testing Set:', len(X_test))
BATCH_SIZE = 16
EPOCHS = 2
IMG_SIZE=50
for epoch in range(EPOCHS):
print(f'Epoch {epoch+1}/{EPOCHS}')
running_loss = RunningMetrics()
running_acc = RunningMetrics()
for i in tqdm(range(0, len(X_train), BATCH_SIZE)):
inputs = X_train[i:i+BATCH_SIZE].view(-1,1, IMG_SIZE, IMG_SIZE)
targets = y_train[i:i+BATCH_SIZE]
# inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
_, preds = torch.max(outputs, 1)
loss = loss_function(outputs, targets)
loss.backward()
optimizer.step()
running_loss.update(loss.item()*BATCH_SIZE,
BATCH_SIZE)
running_acc.update(toch.sum(preds == targets).float(),
BATCH_SIZE)
print(f'Loss: {running_loss:.4f}, Acc: {running_acc:.4f}')
print('-'*10)
Dataset:
I am using the Microsoft's dataset of cats and dogs images
EDIT:
The error previous message has been solved following Anonymous' advice but now I am getting another error:
Traceback (most recent call last):
File "nn_conv.py", line 203, in
running_acc.update(torch.sum(preds == targets).float(),
RuntimeError: The size of tensor a (16) must match the size of tensor b (2) at non-singleton dimension 1
Input : 16 x 1 x 50 x 50
After conv1/maxpool1 : 16 x 32 x 25 x 25
After conv2/maxpool2 : 16 x 64 x 12 x 12 (no padding so taking floor)
After conv3/maxpool3 : 16 x 128 x 6 x 6 (=73 728 neurons here is your error)
Flattening : you specified a view like -1 x 32 * 4 * 8 * 8 = 9 x 8192
The correct flattening is -1 x 32 * 4 * 6 * 6
Few tips :
as you begin pytorch, you should go see how to use a dataloader/dataset
the binary cross entropy is more commonly used for classification (though MSE is still possible)
I'm trying to add an L1 penalty to a specific layer of a neural network, and I have the code below (in which I attempt to add l1 penalty to the first layer). If I run it for lambda = 0 (i.e. no penalty), the output gets very close to the expected weights those being [10, 12, 2, 11, -0.25]) and if I run for enough epochs or reduce batch size it will get it exactly, as in the output below:
mlp.0.weight
Parameter containing:
tensor([[ 9.8657, -11.8305, 2.0242, 10.8913, -0.1978]],
requires_grad=True)
Then, when I run it for a large lambda, say 1000, I would expect these weights to shrink towards zero as there is a large penalty being added to the loss that we are trying to minimise. However, the opposite happens and the weights explode, as in the output below (for lam = 1000)
mlp.0.weight
Parameter containing:
tensor([[-13.9368, 9.9072, 2.2447, -11.6870, 26.7293]],
requires_grad=True)
If anyone could help me, that'd be great. I'm new to pytorch (but not the idea of regularisation), so I'm guessing it's something in my code that is the problem.
Thanks
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader
import numpy as np
from sklearn.linear_model import LinearRegression
class TrainDataset(Dataset):
def __init__(self, data):
self.data = data
def __len__(self):
return self.data.shape[0]
def __getitem__(self, ind):
x = self.data[ind][1:]
y = self.data[ind][0]
return x, y
class TestDataset(TrainDataset):
def __getitem__(self, ind):
x = self.data[ind]
return x
torch.manual_seed(94)
x_train = np.random.rand(1000, 5)
y_train = x_train[:, 0] * 10 - x_train[:, 1] * 12 + x_train[:, 2] * 2 + x_train[:, 3] * 11 - x_train[:, 4] * 0.25
y_train = y_train.reshape(1000, 1)
x_train.shape
y_train.shape
train_data = np.concatenate((y_train, x_train), axis=1)
train_set = TrainDataset(train_data)
batch_size = 100
train_loader = DataLoader(train_set, batch_size=batch_size, shuffle=True)
class MLP(nn.Module):
def __init__(self):
super(MLP, self).__init__()
self.mlp = nn.Sequential(nn.Linear(5, 1, bias=False))
def forward(self, x_mlp):
out = self.mlp(x_mlp)
return out
device = 'cpu'
model = MLP()
optimizer = torch.optim.SGD(model.parameters(), lr=0.02, momentum=0.82)
criterion = nn.MSELoss()
epochs = 5
lam = 0
model.train()
for epoch in range(epochs):
losses = []
for batch_num, input_data in enumerate(train_loader):
optimizer.zero_grad()
x, y = input_data
x = x.to(device).float()
y = y.reshape(batch_size, 1)
y = y.to(device)
output = model(x)
for name, param in model.named_parameters():
if name == 'mlp.0.weight':
l1_norm = torch.norm(param, 1)
loss = criterion(output, y) + lam * l1_norm
loss.backward()
optimizer.step()
print('\tEpoch %d | Batch %d | Loss %6.2f' % (epoch, batch_num, loss.item()))
for name, param in model.named_parameters():
if param.requires_grad:
print(name)
print(param)
I found that if I use Adagrad as the optimiser instead of SGD, it acts as expected. Will need to look into the difference of those now, but this can be considered answered.
I'm trying to build a CNN but I get this error:
---> 52 x = x.view(x.size(0), 5 * 5 * 16)
RuntimeError: shape '[16, 400]' is invalid for input of size 9600
It's not clear for me what the inputs of the 'x.view' line should be. Also, I don't really understand how many times I should have this 'x.view' function in my code. Is it only once, after the 3 convolutional layers and 2 linear layers? Or is it 5 times, one after every layer?
Here's my code:
CNN
import torch.nn.functional as F
# Convolutional neural network
class ConvNet(nn.Module):
def __init__(self, num_classes=10):
super(ConvNet, self).__init__()
self.conv1 = nn.Conv2d(
in_channels=3,
out_channels=16,
kernel_size=3)
self.conv2 = nn.Conv2d(
in_channels=16,
out_channels=24,
kernel_size=4)
self.conv3 = nn.Conv2d(
in_channels=24,
out_channels=32,
kernel_size=4)
self.dropout = nn.Dropout2d(p=0.3)
self.pool = nn.MaxPool2d(2)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(512, 10)
self.final = nn.Softmax(dim=1)
def forward(self, x):
print('shape 0 ' + str(x.shape))
x = F.max_pool2d(F.relu(self.conv1(x)), 2)
x = self.dropout(x)
print('shape 1 ' + str(x.shape))
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = self.dropout(x)
print('shape 2 ' + str(x.shape))
# x = F.max_pool2d(F.relu(self.conv3(x)), 2)
# x = self.dropout(x)
x = F.interpolate(x, size=(5, 5))
x = x.view(x.size(0), 5 * 5 * 16)
x = self.fc1(x)
return x
net = ConvNet()
Can someone help me understand the problem?
The output of 'x.shape' is:
shape 0 torch.Size([16, 3, 256, 256])
shape 1 torch.Size([16, 16, 127, 127])
shape 2 torch.Size([16, 24, 62, 62])
Thanks
This means that instead the product of the channel and spatial dimensions is not 5*5*16. To flatten the tensor, replace x = x.view(x.size(0), 5 * 5 * 16) with:
x = x.view(x.size(0), -1)
And self.fc1 = nn.Linear(600, 120) with:
self.fc1 = nn.Linear(600, 120)
I'm on the Pytorch documentation (https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html) and I'm not really understanding why they are making the the affine layer (16 * 6 * 6, 120). I understand that the last outputs from the convolution layer were 16 and the output here is 120, but even with their annotation, I'm not understanding where the 6 * 6 comes from. Can someone please explain?
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 1 input image channel, 6 output channels, 3x3 square convolution
# kernel
self.conv1 = nn.Conv2d(1, 6, 3)
self.conv2 = nn.Conv2d(6, 16, 3)
# an affine operation: y = Wx + b
self.fc1 = nn.Linear(16 * 6 * 6, 120) # 6*6 from image dimension
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
# Max pooling over a (2, 2) window
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
# If the size is a square you can only specify a single number
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def num_flat_features(self, x):
size = x.size()[1:] # all dimensions except the batch dimension
num_features = 1
for s in size:
num_features *= s
return num_features
net = Net()
print(net)
The 6x6 comes from the height and width of x after it has been passed through your convolutions and maxpools.
Here is a simplified version where you can see how the shape changes at each point. It may help to print out the shapes in their example so you can see exactly how everything changes.
import torch
import torch.nn as nn
import torch.nn.functional as F
conv1 = nn.Conv2d(1, 6, 3)
conv2 = nn.Conv2d(6, 16, 3)
# Making a pretend input similar to theirs.
# We define an input with 1 batch, 1 channel, height 32, width 32
x = torch.ones((1,1,32,32))
# Simulating forward()
x = F.max_pool2d(F.relu(conv1(x)), (2, 2))
print(x.shape) # torch.Size([1, 6, 15, 15]) 1 batch, 6 channels, height 15, width 15
x = F.max_pool2d(F.relu(conv2(x)), 2)
print(x.shape) # torch.Size([1, 16, 6, 6]) 1 batch, 16 channels, height 6, width 6
Next they flatten x and pass it through fc1 which accepts 16*6*6 and produces 120 outputs.
I'm trying to convert a convolution layer to a fully-connected layer.
For example, there is an example of 3×3 input and 2x2 kernel:
which is equivalent to a vector-matrix multiplication,
Is there a function in PyTorch to get the matrix B?
I can only partially answer your question:
In your example above, you write the kernel as matrix and the input as a vector. If you are fine with writing the input as a matrix, you can use torch.nn.Unfold which explicitly calculates a convolution in the documentation:
# Convolution is equivalent with Unfold + Matrix Multiplication + Fold (or view to output shape)
inp = torch.randn(1, 3, 10, 12)
w = torch.randn(2, 3, 4, 5)
inp_unf = torch.nn.functional.unfold(inp, (4, 5))
out_unf = inp_unf.transpose(1, 2).matmul(w.view(w.size(0), -1).t()).transpose(1, 2)
out = out_unf.view(1, 2, 7, 8)
(torch.nn.functional.conv2d(inp, w) - out).abs().max()
# tensor(1.9073e-06)
If, however, you need to calculate the matrix for the kernel (the smaller matrix) you can use this function, which is based on Warren Weckessers answer:
def toeplitz_1_ch(kernel, input_size):
# shapes
k_h, k_w = kernel.shape
i_h, i_w = input_size
o_h, o_w = i_h-k_h+1, i_w-k_w+1
# construct 1d conv toeplitz matrices for each row of the kernel
toeplitz = []
for r in range(k_h):
toeplitz.append(linalg.toeplitz(c=(kernel[r,0], *np.zeros(i_w-k_w)), r=(*kernel[r], *np.zeros(i_w-k_w))) )
# construct toeplitz matrix of toeplitz matrices (just for padding=0)
h_blocks, w_blocks = o_h, i_h
h_block, w_block = toeplitz[0].shape
W_conv = np.zeros((h_blocks, h_block, w_blocks, w_block))
for i, B in enumerate(toeplitz):
for j in range(o_h):
W_conv[j, :, i+j, :] = B
W_conv.shape = (h_blocks*h_block, w_blocks*w_block)
return W_conv
which is not in pytorch but in numpy. This is for padding = 0 but can easily be adjusted by changing h_blocks and w_blocks and W_conv[i+j, :, j, :].
Update: Multiple output channels are just multiple of these matrices, as each output has its own kernel. Multiple input channels also have their own kernels - and their own matrices - over which you average after the convolution. This can be implemented as follows:
def conv2d_toeplitz(kernel, input):
"""Compute 2d convolution over multiple channels via toeplitz matrix
Args:
kernel: shape=(n_out, n_in, H_k, W_k)
input: shape=(n_in, H_i, W_i)"""
kernel_size = kernel.shape
input_size = input.shape
output_size = (kernel_size[0], input_size[1] - (kernel_size[1]-1), input_size[2] - (kernel_size[2]-1))
output = np.zeros(output_size)
for i,ks in enumerate(kernel): # loop over output channel
for j,k in enumerate(ks): # loop over input channel
T_k = toeplitz_1_ch(k, input_size[1:])
output[i] += T_k.dot(input[j].flatten()).reshape(output_size[1:]) # sum over input channels
return output
To check the correctness:
k = np.random.randn(4*3*3*3).reshape((4,3,3,3))
i = np.random.randn(3,7,9)
out = conv2d_toeplitz(k, i)
# check correctness of convolution via toeplitz matrix
print(np.sum((out - F.conv2d(torch.tensor(i).view(1,3,7,9), torch.tensor(k)).numpy())**2))
>>> 1.0063523219807736e-28
Update 2:
It is also possible to do this without looping in one matrix:
def toeplitz_mult_ch(kernel, input_size):
"""Compute toeplitz matrix for 2d conv with multiple in and out channels.
Args:
kernel: shape=(n_out, n_in, H_k, W_k)
input_size: (n_in, H_i, W_i)"""
kernel_size = kernel.shape
output_size = (kernel_size[0], input_size[1] - (kernel_size[1]-1), input_size[2] - (kernel_size[2]-1))
T = np.zeros((output_size[0], int(np.prod(output_size[1:])), input_size[0], int(np.prod(input_size[1:]))))
for i,ks in enumerate(kernel): # loop over output channel
for j,k in enumerate(ks): # loop over input channel
T_k = toeplitz_1_ch(k, input_size[1:])
T[i, :, j, :] = T_k
T.shape = (np.prod(output_size), np.prod(input_size))
return T
The input has to be flattened and the output reshaped after multiplication.
Checking for correctness (using the same i and k as above):
T = toeplitz_mult_ch(k, i.shape)
out = T.dot(i.flatten()).reshape((1,4,5,7))
# check correctness of convolution via toeplitz matrix
print(np.sum((out - F.conv2d(torch.tensor(i).view(1,3,7,9), torch.tensor(k)).numpy())**2))
>>> 1.5486060830252635e-28
You can use my code for convolution with circular padding:
import numpy as np
import scipy.linalg as linalg
def toeplitz_1d(k, x_size):
k_size = k.size
r = *k[(k_size // 2):], *np.zeros(x_size - k_size), *k[:(k_size // 2)]
c = *np.flip(k)[(k_size // 2):], *np.zeros(x_size - k_size), *np.flip(k)[:(k_size // 2)]
t = linalg.toeplitz(c=c, r=r)
return t
def toeplitz_2d(k, x_size):
k_h, k_w = k.shape
i_h, i_w = x_size
ks = np.zeros((i_w, i_h * i_w))
for i in range(k_h):
ks[:, i*i_w:(i+1)*i_w] = toeplitz_1d(k[i], i_w)
ks = np.roll(ks, -i_w, 1)
t = np.zeros((i_h * i_w, i_h * i_w))
for i in range(i_h):
t[i*i_h:(i+1)*i_h,:] = ks
ks = np.roll(ks, i_w, 1)
return t
def toeplitz_3d(k, x_size):
k_oc, k_ic, k_h, k_w = k.shape
i_c, i_h, i_w = x_size
t = np.zeros((k_oc * i_h * i_w, i_c * i_h * i_w))
for o in range(k_oc):
for i in range(k_ic):
t[(o * (i_h * i_w)):((o+1) * (i_h * i_w)), (i * (i_h * i_w)):((i+1) * (i_h * i_w))] = toeplitz_2d(k[o, i], (i_h, i_w))
return t
if __name__ == "__main__":
import torch
k = np.random.randint(50, size=(3, 2, 3, 3))
x = np.random.randint(50, size=(2, 5, 5))
t = toeplitz_3d(k, x.shape)
y = t.dot(x.flatten()).reshape(3, 5, 5)
xx = torch.nn.functional.pad(torch.from_numpy(x.reshape(1, 2, 5, 5)), pad=(1, 1, 1, 1), mode='circular')
yy = torch.conv2d(xx, torch.from_numpy(k))
err = ((y - yy.numpy()) ** 2).sum()
print(err)
While the other answers are correct, there is a faster way. In your example, you give an input of size 3x3 with a kernel of size 2x2. And your resulting circulant matrix multiplied by the input image is 9x9x4 operations, or 324 in total. Here is a method that does this with 4 x 4 x 4, or 64 operations in total. We will use Pytorch, but this could be done in Numpy, as well.
Assume an image input of shape (batch, channels, height, width):
import torch
def get_kernel_inputs(image, kernel):
out = torch.empty(image.size()[0], 0, 1, kernel.size()[-2] * kernel.size()[-1])
for k in range(image.size()[-2] - kernel.size()[-2] + 1):
for l in range(image.size()[-1] - kernel.size()[-1] + 1):
out = torch.cat([out,image[:, :, k:k+kernel.size()[-2],l:l + kernel.size()[-1]].reshape(image.size()[0], -1, 1, kernel.size()[-1] * kernel.size()[-2])], dim=1)
return out
Now let's test to see what size out this gives:
img = torch.rand(1, 1, 3, 3)
kernel = torch.rand(2, 2)
kernelized_img = get_kernel_inputs(img, kernel)
print(kernelized_img.size())
This yields a size of:
torch.Size([1, 4, 1, 4])
So there are 16 values stored in the above tensor. Now let's matrix multiply:
print(torch.matmul(kernelized_img, kernel.view(4)))
This is 16 x 4 multiplications.
Finally, let's test that this is, in fact, giving out the correct value by using the Torch Conv2d module:
import torch.nn as nn
mm = nn.Conv2d(1, 1, (2,2), bias=False)
with torch.no_grad():
kernel_test = mm.weight
print("Control ", mm(img))
print("Test", torch.matmul(kernelized_img, kernel_test.view(4)).view(1, 1, 2, 2))
Control tensor([[[[-0.0089, 0.0178],
[-0.1419, 0.2720]]]], grad_fn=<ThnnConv2DBackward>)
Test tensor([[[[-0.0089, 0.0178],
[-0.1419, 0.2720]]]], grad_fn=<ViewBackward>)
All we are doing differently in the above is reshaping the image instead of the kernel.
Setting the image height and width equal and the kernel height and width equal, where
i=image height/width
k=kernel height/width
Then the difference in the number of calculations in the Toeplitz method vs. the above method is:
Edit Addition:
The above implementation only worked on single-channel inputs. For this definition to work on multiple channel inputs and outputs, plus handle batches, can do the following:
def get_kernel_inputs(image, kernel):
out=torch.empty(image.size()[0], image.size()[1], 0, kernel.size()[-2]*kernel.size()[-1])
out_size=[image.size()[-2]-kernel.size()[-2]+1,(image.size()[-1]-kernel.size()[-1]+1)]
for k in range(out_size[0]):
for l in range(out_size[1]):
out=torch.cat([out,image[:,:,k:k+kernel.size()[-2],l:l+kernel.size()[-1]].reshape(image.size()[0],-1,1,kernel.size()[-1]*kernel.size()[-2])],dim=2)
preout=out.permute(0,2,1,3).reshape(image.size()[0],-1,image.size()[1]*kernel.size()[-2]*kernel.size()[-1])
kernel1 = kernel.view(kernel.size()[0], -1)
out = torch.matmul(preout, kernel1.T).permute(0, 2, 1).reshape(image.size()[0], kernel.size()[0],
out_size[0], out_size[1])
return out
images=torch.rand(5, 3, 32, 32)
mm=nn.Conv2d(3, 32, (3, 3), bias=False)
#Set the kernel to Conv2d init for testing
with torch.no_grad():
kernel=mm.weight
print(get_kernel_inputs(images, kernel))
print(mm(images))