Google Kubernetes: worker pool not scaling down to zero - kubernetes

I'm setting up a GKE cluster on Google Kubernetes Engine to run some heavy jobs. I have a render-pool of big machines that I want to autoscale from 0 to N (using the cluster autoscaler). My default-pool is a cheap g1-small to run the system pods (those never go away so the default pool can't autoscale to 0, too bad).
My problem is that the render-pool doesn't want to scale down to 0. It has some system pods running on it; are those the problem? The default pool has plenty of resources to run all of them as far as I can tell. I've read the autoscaler FAQ, and it looks like it should delete my node after 10 min of inactivity. I've waited an hour though.
I created the render pool like this:
gcloud container node-pools create render-pool-1 --cluster=test-zero-cluster-2 \
--disk-size=60 --machine-type=n2-standard-8 --image-type=COS \
--disk-type=pd-standard --preemptible --num-nodes=1 --max-nodes=3 --min-nodes=0 \
--enable-autoscaling
The cluster-autoscaler-status configmap says ScaleDown: NoCandidates and it is probing the pool frequently, as it should.
What am I doing wrong, and how do I debug it? Can I see why the autoscaler doesn't think it can delete the node?

As pointed out in the comments, some pods, under specific circumstances will prevent the CA from downscaling.
In GKE, you have logging pods (fluentd), kube-dns, monitoring, etc., all considered system pods. This means that any node where they're scheduled, will not be a candidate for downscaling.
Considering this, it all boils down to creating an scenario where all the previous conditions for downscaling are met.
Since you only want to scale down an specific node-pool, I'd use Taints and tolerations to keep system pods in the default pool.
For GKE specifically, you can pick each app by their k8s-app label, for instance:
$ kubectl taint nodes GPU-NODE k8s-app=heapster:NoSchedule
This will prevent the tainted nodes from scheduling Heapster.
Not recommended but, you can go broader and try to get all the GKE system pods using kubernetes.io/cluster-service instead:
$ kubectl taint nodes GPU-NODE kubernetes.io/cluster-service=true:NoSchedule
Just be careful as the scope of this label is broader and you'll have to keep track of oncoming changes, as this label is possibily going to be deprecated someday.
Another thing that you might want to consider is using Pod Disruption Budgets. This might be more effective in stateless workloads, but setting it very tight is likely to cause inestability.
The idea of a PDB is to tell GKE what's the very minimal amount of pods that can be run at any given time, allowing the CA to evict them. It can be applied to system pods like below:
apiVersion: policy/v1beta1
kind: PodDisruptionBudget
metadata:
name: dns-pdb
spec:
minAvailable: 1
selector:
matchLabels:
k8s-app: kube-dns
This tell GKE that, although there's usually 3 replicas of kube-dns, the application might be able to take 2 disruptions and sustain temporarily with only 1 replica, allowing the CA to evict these pods and reschedule them in other nodes.
As you probably noticed, this will put stress on DNS resolution in the cluster (in this particular example), so be careful.
Finally and regarding how to debug the CA. For now, consider that GKE is a managed version of Kubernetes where you don't really have direct access to tweak some features (for better or worse). You cannot set flags in the CA and access to logs could be through GCP support. The idea is to protect the workloads running in the cluster rather than to be cost-wise.
Downscaling in GKE is more about using different features in Kubernetes together until the CA conditions for downscaling are met.

Related

Kubernetes AKS PodDisruptionBudget, HorizontalPodAutoscaler & RollingUpdate Interaction - Without Load

My question is similar to this one, about pdb,hpa and drain
Bear in mind that most of the time my pod is not under load, and so has only 1 replica, but at times, it scales up to ~7 or 8 replica
I have the following Kubernetes objects in an AKS cluster:
Deployment with rollingUpdate.maxUnavailable set to 0, rollingUpdate.maxSurge set to 1
PodDisruptionBudget with minUnavailable set to 1.
HorizontalPodAutoscaler setup to allow auto scaling, with bounds 1-10 lower-upper
Cluster auto-scaling is enabled.
When I trigger a update of the cluster (not an update of the service pod)
AKS first triggers a drain on the node that hosts my pod.
The update fails, because at this time, the number of replicas is 1, and the PodDisruptionBudget is 1, so the evict on the pod fails, and so the drain fails, and AKS eventually fails the update after that.
Other pods on the same node work well, there are new nodes created, and new pods scheduled there, and then the old pods, and the old node are terminated, those pods don't specify a PodDisruptionBudget at all.
My question is is this just an AKS specific thing in how they implemented the Cluster Upgrade - do these constraints work in other kubernetes implementations?
I would expect that the drain should allow my pod to be evicted, but scheduled onto another node, creating the new pod first, as per the rollingUpdate strategy stipulated.
the HorizontalPodAutoscaler should allow a second replica to be created by rollingUpdate.maxSurge=1
I am assuming that the rollingUpdate is never called when I upgrade the cluster, though I am not sure.
The quickest solution I can think of is HorizontalPodAutoscaler = 2-10 so that there's never only one left. but this is wasteful for most of the time.
What is my best option?

Can a node autoscaler automatically start an extra pod when replica count is 1 & minAvailable is also 1?

our autoscaling (horizontal and vertical) works pretty fine, except the downscaling is not working somehow (yeah, we checked the usual suspects like https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/FAQ.md#i-have-a-couple-of-nodes-with-low-utilization-but-they-are-not-scaled-down-why ).
Since we want to save resources and have pods which are not ultra-sensitive, we are setting following
Deployment
replicas: 1
PodDisruptionBudget
minAvailable: 1
HorizontalPodAutoscaler
minReplicas: 1
maxReplicas: 10
But it seems now that this is the problem that the autoscaler is not scaling down the nodes (even though the node is only used by 30% by CPU + memory and we have other nodes which have absolutely enough memory + cpu to move these pods).
Is it possible in general that the auto scaler starts an extra pod on the free node and removes the old pod from the old node?
Is it possible in general that the auto scaler starts an extra pod on the free node and removes the old pod from the old node?
Yes, that should be possible in general, but in order for the cluster autoscaler to remove a node, it must be possible to move all pods running on the node somewhere else.
According to docs there are a few type of pods that are not movable:
Pods with restrictive PodDisruptionBudget.
Kube-system pods that:
are not run on the node by default
don't have a pod disruption budget set or their PDB is too restrictive >(since CA 0.6).
Pods that are not backed by a controller object (so not created by >deployment, replica set, job, stateful set etc).
Pods with local storage.
Pods that cannot be moved elsewhere due to various constraints (lack of >resources, non-matching node selectors or affinity, matching anti-affinity, etc)
Pods that have the following annotation set:
cluster-autoscaler.kubernetes.io/safe-to-evict: "false
You could check the cluster autoscaler logs, they may provide a hint to why no scale in happens:
kubectl -n kube-system logs -f deployment.apps/cluster-autoscaler
Without having more information about your setup it is hard to guess what is going wrong, but unless you are using local storage, node selectors or affinity/anti-affinity rules etc Pod disruption policies is a likely candidate. Even if you are not using them explicitly they can still prevent node scale in if they there are pods in the kube-system namespace that are missing pod disruption policies (See this answer for an example of such a scenario in GKE)

GKE node pool with Autoscaling does not scale down

I have a GKE cluster with two nodepools. I turned on autoscaling on one of my nodepools but it does not seem to automatically scale down.
I have enabled HPA and that works fine. It scales the pods down to 1 when I don't see traffic.
The API is currently not getting any traffic so I would expect the nodes to scale down as well.
But it still runs the maximum 5 nodes despite some nodes using less than 50% of allocatable memory/CPU.
What did I miss here? I am planning to move these pods to bigger machines but to do that I need the node autoscaling to work to control the monthly cost.
There are many reasons that can cause CA to not be downscaling successfully. If we resume how this should work normally it will be something like this:
Cluster autoscaler will periodically check (every 10 seconds) utilization of the nodes.
If the utilization factor is less than 0.5 the node will be considered as under utilization.
Then the nodes will be marked for removal and will be monitored for next 10 mins to make sure the utilization factor stays less than 0.5.
If even after 10 mins it stays under utilized then the node would be removed by cluster autoscaler.
If above is not being accomplished, then something else is preventing your nodes to be downscaling. In my experience PDBs needs to be applied to kube-system pods and I would say that could be the reason why; however, there are many reasons why this can be happening, here are reasons that can cause downscaling issues:
1. PDB is not applied to your kube-system pods. Kube-system pods prevent Cluster Autoscaler from removing nodes on which they are running. You can manually add Pod Disruption Budget(PDBs) for the kube-system pods that can be safely rescheduled elsewhere, this can be added with next command:
`kubectl create poddisruptionbudget PDB-NAME --namespace=kube-system --selector app=APP-NAME --max-unavailable 1`
2. Containers using local storage (volumes), even empty volumes. Kubernetes prevents scale down events on nodes with pods using local storage. Look for this kind of configuration that prevents Cluster Autoscaler to scale down nodes.
3. Pods annotated with cluster-autoscaler.kubernetes.io/safe-to-evict: true. Look for pods with this annotation that can be preventing Nodes scaledown
4. Nodes annotated with cluster-autoscaler.kubernetes.io/scale-down-disabled: true. Look for Nodes with this annotation that can be preventing cluster Autoscale. These configurations are the ones I will suggest you check on, in order to make your cluster to be scaling down nodes that are under utilized. -----
Also you can see this page where explains the configuration to prevent the downscales, which can be what is happening to you.

How to make sure Kubernetes autoscaler not deleting the nodes which runs specific pod

I am running a Kubernetes cluster(AWS EKS one) with Autoscaler pod So that Cluster will autoscale according to the resource request within the cluster.
Also, cluster will shrink no of nodes when the load is reduced. As I observed, Autosclaer can delete any node in this process.
I want to control this behavior such as asking Autoscaler to stop deleting nodes that runs a specific pod.
For example, If a node runs the Jenkins pod, Autoscaler should skip that node and delete other matching node from the cluster.
Will there a way to achieve this requirement. Please give your thoughts.
You can use "cluster-autoscaler.kubernetes.io/safe-to-evict": "false"
...
template:
metadata:
labels:
app: jenkins
annotations:
"cluster-autoscaler.kubernetes.io/safe-to-evict": "false"
spec:
nodeSelector:
failure-domain.beta.kubernetes.io/zone: us-west-2b
...
You should set a pod disruption budget that references specific pods by label. If you want to ensure that there is at least one Jenkins worker pod running at all times, for example, you could create a PDB like
apiVersion: policy/v1beta1
kind: PodDisruptionBudget
metadata:
name: jenkins-worker-pdb
spec:
minAvailable: 1
selector:
matchLabels:
app: jenkins
component: worker
(adapted from the basic example in Specifying a Disruption Budget in the Kubernetes docs).
Doing this won't prevent nodes from being destroyed; the cluster autoscaler is still free to scale things down. What it will do is temporarily delay destroying a node until the disruption budget can be met again.
For example, say you've configured your Jenkins setup so that there are three workers. Two get scheduled on the same node, and the autoscaler takes that node offline. The ordinary Kubernetes Deployment system will create two new replicas on nodes that still exist. If the autoscaler also decides it wants to destroy the node that has the last worker, the pod disruption budget above will prevent it from doing so until at least one other worker is running.
When you say "the Jenkins pod" in the question, there are two other important implications to this. One is that you should almost always configure your applications using higher-level objects like Deployments or StatefulSets and not bare Pods. The other is that it is generally useful to run multiple copies of things for redundancy if nothing else. Even absent the cluster autoscaler, disks fail, Amazon occasionally arbitrarily decommissions EC2 instances, and nodes otherwise can go offline outside of your control; you often don't want just one copy of something running in your cluster, especially if you're considering it a critical service.
In autoscaler FAQ on github you can read the following:
What types of pods can prevent CA from removing a node?
Pods with restrictive PodDisruptionBudget.
Kube-system pods that:
are not run on the node by default, *
don't have a pod disruption
budget
set or their PDB is too restrictive (since CA 0.6).
Pods that are not backed by a controller object (so not created by deployment, replica set, job, stateful set etc). *
Pods with local storage. *
Pods that cannot be moved elsewhere due to various constraints (lack of resources, non-matching node selectors or affinity, matching
anti-affinity, etc)
Pods that have the following annotation set: "cluster-autoscaler.kubernetes.io/safe-to-evict": "false"
*Unless the pod has the following annotation (supported in
CA 1.0.3 or later): "cluster-autoscaler.kubernetes.io/safe-to-evict": "true"

Does HorizontalPodAutoscaler make sense when there is only one Deployment on GKE (Google Container Engine) Kubernetes cluster?

I have a "homogeneous" Kubernetes setup. By this I mean that I am only running instances of a single type of pod (an http server) with a load balancer service distributing traffic to them.
By my reasoning, to get the most out of my cluster (edit: to be concrete -- getting the best average response times to http requests) I should have:
At least one pod running on every node: Not having a pod running on a node, means that I am paying for the node and not having it ready to serve a request.
At most one pod running on every node: The pods are threaded http servers so they can maximize utilization of a node, so running multiple pods on a node does not net me anything.
This means that I should have exactly one pod per node. I achieve this using a DaemonSet.
The alternative way is to configure a Deployment and apply a HorizontalPodAutoscaler to it and have Kubernetes handle the number of pods and pod to node mapping. Is there any disadvantage of my approach in comparison to this?
My evaluation is that the HorizontalPodAutoscaler is relevant mainly in heterogeneous situations, where one HorizontalPodAutoscaler can scale up a Deployment at the expense of another Deployment. But since I have only one type of pod, I would have only one Deployment and I would be scaling up that deployment at the expense of itself, which does not make sense.
HorizontalPodAutoscaler is actually a valid solution for your needs. To address your two concerns:
1. At least one pod running on every node
This isn't your real concern. The concern is underutilizing your cluster. However, you can be underutilizing your cluster even if you have a pod running on every node. Consider a three-node cluster:
Scenario A: pod running on each node, 10% CPU usage per node
Scenario B: pod running on only one node, 70% CPU usage
Even though Scenario A has a pod on each node the cluster is actually being less utilized than in Scenario B where only one node has a pod.
2. At most one pod running on every node
The Kubernetes scheduler tries to spread pods around so that you don't end up with multiple pods of the same type on a single node. Since in your case the other nodes should be empty, the scheduler should have no problems starting the pods on the other nodes. Additionally, if you have the pod request resources equivalent to the node's resources, that will prevent the scheduler from scheduling a new pod on a node that already has one.
Now, you can achieve the same effect whether you go with DaemonSet or HPA, but I personally would go with HPA since I think it fits your semantics better, and would also work much better if you eventually decide to add other types of pods to your cluster
Using a DamonSet means that the pod has to run on every node (or some subset). This is a great fit for something like a logger or a metrics collector which is per-node. But you really just want to use available cluster resources to power your pod as needed, which matches up better with the intent of HPA.
As an aside, I believe GKE supports cluster autoscaling, so you should never be paying for nodes that aren't needed.